X-PDF

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. Пример 1.Построить проекции точки, лежащей на плоскости общего положения (рисунок 1а).

Поделиться статьей

Пример 1. Построить проекции точки, лежащей на плоскости общего положения (рисунок 1а).

Свойство: если точка лежит на плоскости, то проекции точки лежат на одноимённых проекциях прямой плоскости.

Алгоритм решения:

— построить прямую, принадлежащую заданной плоскости (рисунок 1б) .

— построить точку, принадлежащую этой прямой (рисунок 1в).

 
 

а) б) в)

Рисунок 1

Пример 2. Построить проекции прямой, параллельной заданной прямой общего положения (рисунок 2а).

Свойство: если две прямые параллельны, то одноимённые проекции прямых параллельны.

Алгоритм решения:

— построить проекции прямой параллельно одноимённым проекциям заданной прямой (рисунок 2б).

 

 
 

 

 

а) б)

Рисунок 2

Пример 3. Построить проекции прямой общего положения, перпендикулярной к заданной линии уровня (рисунок 3а).

Свойство: если две прямые линии (одна линия уровня, а другая – общего положения) взаимно перпендикулярны, то проекция прямой общего положения перпендикулярна неискажённой проекции прямой линии уровня.

Алгоритм решения:

— построить проекцию прямой общего положения перпендикулярно неискажённой проекции линии уровня (рисунок 3б) .

— построить вторую проекции прямой общего положения произвольно (рисунок 3в).

а) б) в)

Рисунок 3

Пример 4. Построить проекции пирамиды по заданным координатам вершин (рисунок 4).

Алгоритм решения:

— построить проекции вершин (точек) пирамиды (рисунок 4а) .

— построить проекции ребер (прямых) пирамиды с учетом их видимости (рисунок 4б).

 
 

 

а) б)

Рисунок 4

Пример 5. Построить проекции плоскости, проходящей через заданную точку и касающейся поверхности кругового конуса. (рисунок 5а).

Алгоритм решения:

— построить плоскость уровня, проходящую через заданную точку и пересекающую конус по окружности (рисунок б) .

— построить касательную к окружности и проходящую через заданную точку (рисунок в) .

— построить образующую конуса проходящую через его вершину и точку касания(касательная плоскость определена касательной и образующей) (рисунок 5г).

 

 
 

 

а) б) в) г)

Рисунок 5

Пример 6. Построить проекции точки, принадлежащую поверхности сферы (рисунок 6а).

Свойство: если точка лежит на поверхности, то она лежит на линии принадлежащей этой поверхности.

Алгоритм решения:

— построить линию (параллель), принадлежащую поверхности сферы (рисунок 6б) .

— построить точку принадлежащую этой линии (рисунок 6в).

 
 

 

 

 

а) б) в)

Рисунок 6

Пример 7. Построить проекции линии пересечения проецирующей плоскости с плоскостью общего положения (рисунок 7а).

Свойство: если проецирующая плоскость пересекает плоскость общего положения, то одна проекция линии пересечения совпадает с вырожденной проекцией плоскости.

Алгоритм решения:

— построить точки пересечения проецирующей плоскости с двумя прямыми плоскости (рисунок 7б) .

— соединить две полученные точки прямой линией (рисунок 7в).

 
 

а) б) в)

Рисунок 7

Пример 8. Построить точку пересечения прямой общего положения с плоскостью общего положения (рисунок 8а).

Свойство: если прямая пересекает плоскость, то одна из проекций прямой пересекает одноименную проекцию конкурирующей с ней прямой

плоскости.

Алгоритм решения:

— построить плоскость-посредник частного положения, проходящую через заданную прямую (проекции прямой и плоскости совпадают) и построить прямую пересечения плоскости-посредника с заданной плоскостью (рисунок 8б) .

— построить точку пересечения прямой с плоскостью, как результат пересечения конкурирующих прямых (заданной и прямой пересечения). Определить видимость проекций прямой и плоскости (с помощью конкурирующих точек) на каждой плоскости проекций (рисунок 8в).

 

 

а) б) в)

Представленная информация была полезной?
ДА
59.35%
НЕТ
40.65%
Проголосовало: 1193

Рисунок 8

Пример 9. Определить кратчайшее расстояние между двумя точками (рисунок 9а).

Расстояние между двумя точками равно длине отрезка прямой линии, соединяющей эти точки.

Свойство: расстояние между двумя точками проецируется в истинную величину на ту плоскость проекций, по отношению к которой

отрезок, соединяющий эти точки, является прямой уровня.

Алгоритм решения:

— построить проекции расстояния между точками (рисунок 9б) .

— преобразовать комплексный чертеж так, чтобы заданная прямая, соединяющая две точки, стала линией уровня (рисунок 9в).

Полученное решение позволяет измерить угол a наклона прямой к горизонтальной плоскости проекций.

Пример 10. Определить угол между пересекающимися прямыми линиями (рисунок 10а).

Свойство: угол между пересекающимися прямыми проецируется в истинную величину на ту плоскость проекций, по отношению к которой эти прямые являются линиями уровня.

Алгоритм решения:

— построить проекции горизонтали и проекции радиуса окружности, по которой перемещается вершина угла (методом прямоугольного треугольника) и определить величину радиуса окружности (рисунок 10б) .

— построить истинную величину угла, используя метод вращения вокруг линии уровня (рисунок 10в).

 

 
 
 

 

 

 

а) б в

Рисунок 9

 
 

 

 

а) б) в)

Рисунок 10

Пример 11. Построить развертку пирамидальной поверхности (рисунок 11а).

Алгоритм решения (способ триангуляции):

— определить размеры сторон каждой грани (способом прямоугольного треугольника или одним из способов преобразования комплексного чертежа) (рисунок 11б) .

— построить композицию смежных граней на плоскости (рисунок 11в) .

а) б) в)

Рисунок 11

ЗАДАЧИ ДЛЯ РЕШЕНИЯ

Задачи для решения приведены в таблице 3.

Таблица 3 – Условия задач

1. Определить положение точек относительно плоскостей проекций.   2. Определить положение прямых относительно плоскостей проекций.    

Продолжение таблицы 3

3. Определить положение плоскостей относительно плоскостей проекций. 4. Определить положение пар точек относительно друг друга.  
5. Определить взаимное положение точки и прямой по их проекциям. 6. Определить взаимное положение прямых линий по их проекциям..

 

Продолжение таблицы 3

7. Определить взаимное положение прямой и плоскости по их проекциям.

8. Определить взаимное положение точки и плоскости по их проекциям.
9. Определить взаимное положение плоскостей по их проекциям. 10. Построить три проекции точки по заданным координатам A(10,15,20).  

 

Продолжение таблицы 3

11. Построить третью проекцию точки A координатным способом и с помощью постоянной прямой чертежа.    

 

12. Построить по произвольным параметрам проекции точек A, B, C так, чтобы точка A лежала в плоскости P1, точка B лежала в плоскости P2, а точка C была равноудалена от плоскостей проекций P1, P2 и P3.

13. Построить проекции точки, лежащей на заданной прямой линии общего положения. 14. Построить проекции точки, лежащей на заданной проецирующей плоскости.

 
 

 

Продолжение таблицы 3

15. Построить проекции проецирующей плоскости, проходящей через заданную прямую линию общего положения.   16. Построить проекции прямой уровня, лежащей на заданной плоскости общего положения.
17. Построить проекции точки, лежащей на заданной плоскости общего положения.   18. Построить проекции плоскости, параллельной заданной проецирующей плоскости.

Продолжение таблицы 3

19. Построить проекции прямой, параллельной заданной прямой общего положения. 20. Построить проекции прямой, параллельной заданной плоскости общего положения.
21. Построить проекции прямой, перпендикулярной заданной проецирующей плоскости. 22. Построить проекции линии уровня, перпендикулярной заданной прямой общего положения.

Продолжение таблицы 3

23. Построить проекции прямой, перпендикулярной заданной плоскости общего положения. 24. Построить проекции точки, находящейся от заданной проецирующей плоскости на заданном расстоянии (20 мм).  
25. Построить проекции проецирующей плоскости, находящейся от заданной точки, на заданном расстоянии (20 мм). 26. Построить проекции проецирующей плоскости, находящейся от заданной прямой на заданном расстоянии (20 мм).

Продолжение таблицы 3

27. Построить проекции точки пересечения прямой общего положения с проецирующей плоскостью. 28. Построить проекции линии пересечения проецирующей плоскости с плоскостью общего положения.
29. Построить проекции точки пересечения прямой общего положения с плоскостью общего положения.   30. Построить линию пересечения двух плоскостей, занимающих общее положение.

Продолжение таблицы 3

31. Определить расстояние между двумя точками.   32. Определить расстояние между точкой и плоскостью.
33. Определить расстояние между прямой и параллельной ей плоскостью. 34. Определить расстояние между параллельными плоскостями.    

Продолжение таблицы 3

35. Определить расстояние между точкой и прямой.   36. Определить величину угла между двумя пересекающимися прямыми.
37. Определить величину угла между двумя скрещивающимися прямыми.     38. Определить величину двугранного угла между двумя пересекающимися плоскостями.    

Продолжение таблицы 3

39. Построить проекции точки, находящейся от заданной плоскости общего положения на заданном расстоянии (15 мм).     40. Построить проекции точки, находящейся от заданной прямой на заданном расстоянии (15 мм).
41. Построить проекции прямой общего положения, находящейся от заданной точки на заданном расстоянии (15 мм).   42. Построить проекции прямой общего положения, параллельной заданной прямой и удаленной от неё на заданное расстояние (15 мм).  

Продолжение таблицы 3

43. Построить проекции плоскости общего положения, находящейся от заданной точки на заданном расстоянии (15 мм). 44. Построить проекции прямой параллельной плоскости общего положения и находящейся от неё на заданном расстоянии (15 мм).
45. Построить три проекции пятигранной пирамиды по заданному основанию и вершине. 46. Построить три проекции цилиндра вращения по заданному основанию и высоте.

Продолжение таблицы 3

47. Построить три проекции конуса вращения по заданному основанию и вершине. 48. Построить три проекции сферы по заданному радиусу (15 мм) и центру.    
49. Построить две проекции открытого тора, образованного заданной окружностью и осью вращения (горизонтально-проецирую-щей прямой). 50. Построить проекции точек, принадлежащих поверхности призмы (невидимые точки обозначают в круглых скобках).

Продолжение таблицы 3

51. Построить проекции точек, принадлежащих поверхности пирамиды.   52. Построить проекции точек, принадлежащих поверхности сферы.
 

 

53. Построить проекции линии, принадлежащей поверхности цилиндра.

54. Построить проекции линии, принадлежащей поверхности конуса.

Продолжение таблицы 3

55. Построить проекции линии, принадлежащей поверхности сферы. 56. Построить проекции винтовой линии, принадлежащей поверхности цилиндра (шаг винтовой линии равен высоте цилиндра).
57. Построить точки пересечения прямой общего положения с поверхностью пирамиды. 58. Построить точки пересечения прямой общего положения с поверхностью конуса.

Продолжение таблицы 3

59. Построить точки пересечения окружности с поверхностью сферы. 60. Построить проекции линии пересечения сферы с горизонтально-проецирующей призмой.
61. Построить проекции линии пересечения (кривую Вивиани) полусферы с фронтально- проецирующим цилиндром 62. Построить линию пересечения конуса с цилиндром (способом концентрических сфер).

Окончание таблицы 3

63. Построить развертку поверхности способом нормального сечения.

 

64. Построить развертку поверхности способом триангуляции (треугольников).

ЗАКЛЮЧЕНИЕ

Решая задачи начертательной геометрии, студенты учатся моделировать на чертеже проективные, аффинные и метрические свойства пространственного объекта, а также по известным свойствам проекций выявлять геометрические свойства изображенного объекта и выполнять на чертеже дополнительные геометрические построения.

Умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК ЛИТЕРАТУРЫ

1. Середа В.Г. Начертательная геометрия. Практикум для студентов: учеб. пособие / В.Г. Середа, А.Ф. Медведь. – Севастополь: Изд-во СевНТУ, 2008. – 122 с.

2. Медведь А.Ф., Середа В.Г. Моделирование структуры геометрических объектов: методические указания к выполнению расчетно-графического задания. – Севастополь: СевГУ, 2016. – 20 с.

3. Медведь А.Ф., Середа В.Г. Моделирование точек и линий на поверхностях геометрических тел: методические указания к выполнению расчетно-графического задания. – Севастополь: СевГУ, 2016. – 16 с.

4. Медведь А.Ф., Середа В.Г. Моделирование сечений, пересечений и разверток поверхностей: методические указания к выполнению расчетно-графического задания. – Севастополь: СевГУ, 2016. – 28 с.

5. Середа В.Г. Медведь А.Ф. Моделирование метрических характеристик объектов: методические указания к выполнению расчетно-графического задания. – Севастополь: СевГУ, 2016. – 16 с.

 


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
59.35%
НЕТ
40.65%
Проголосовало: 1193

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ЯТТС-Рекомендации по написанию отчета по учебной и производственной практики-Гостинечное дело

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 59.35% НЕТ 40.65% Проголосовало: 1193


Поделиться статьей

ЮУрГУ-вопросы

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 59.35% НЕТ 40.65% Проголосовало: 1193


Поделиться статьей

ЮУГУ-Отчет_ПП-Машины непрерывного транспорта

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 59.35% НЕТ 40.65% Проголосовало: 1193


Поделиться статьей

ЮУГУ- Курсовой проект по электронике

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 59.35% НЕТ 40.65% Проголосовало: 1193


Поделиться статьей

ЮУГУ-ВКР-Обеспечение требований охраны труда на рабочем месте слесаря-ремонтника 5 разряда

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 59.35% НЕТ 40.65% Проголосовало: 1193


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет