X-PDF

Частотные характеристики типовых динамических звеньев

Поделиться статьей

Полученные ранее формулы (3.19), (3.20) и (3.21) являются определяющими для нахождения аналитических выражений для частотных характеристик.

Апериодическое звено

W(jw) = = = — j , (3.55)

т.е. U(w) = . V(w) = .

A(w) = = . (3.56)

j(w) = arctg = — arctg wT. (3.57)

АЧХ и ФЧХ звенья показаны на рис. 3.12.

Рис.3.12

Из рис. 3.12 следует, что апериодическое звено обладает свойством фильтра высоких частот и при изменении частоты от 0 до ¥ сдвиг по фазе изменяется от 0 до -90°.

Если АЧХ и ФЧХ этого звена сняты экспериментально, то на частоте w = 1/Т, A(1/T)= , j(1/T)=-45°. Поэтому значения эти легко найти. Следовательно, по полученным характеристикам можно найти пара­метры звена (К и Т).

АФХ может быть построена по формуле (3.55) при изменении частоты от 0 до ¥. Это обусловлено тем, что для частотных характеристик линейных звеньев и систем

U(-w)=U(w), V(-w)=-V(w).

Рис.3.13

Это значит, что АФХ симметрична относительно действительной оси в диапазонах частот от 0 до + ¥ и от — ¥ до 0.

АФХ апериодического звена показана на рис.3.13.

Отметим, что для линейных систем и звеньев строятся асимптотические ЛАЧХ. Рассмотрим методику этого построения для апериодического звена.

Используя выражение (3.56), найдем соотношение для ЛАЧХ в децибелах (дБ).

L(w)=20lg =20lg1-20lg . (3.58)

Найдем асимптотическое представление для (3.58). Для этого рассмотрим два диапазона частот.

Для 0 £ w &lt . 1/T L(w)» 20lg1. (3.59)

Для 1/T £ w &lt . ¥ L(w)» 20lg1 — 20lgwT=-20lgwT. (3.60)

Выражения (3.59) и (3.60) представляет собой уравнения прямых линий (асимптот точной ЛАЧХ). Низкочастотная асимптота (3.59) горизонтальна и совпадает с осью частот, а высокочастотная асимптота (3.60) является наклонной прямой линией. Эти асимптоты сопрягаются (соединяются) на частоте сопряжения.

Представленная информация была полезной?
ДА
59.43%
НЕТ
40.57%
Проголосовало: 1166

Выясним, с каким наклоном на плоскости ЛАЧХ проводится асимптота (3.60). Для этого найдем изменение ординаты этой асимптоты при десятикратном изменении частоты, т.е. найдем наклон прямой в размерности дБ/дек:

L(10w) — L(w) = 20lg1 — 20lg(10wT) — 20lg1 — 20lgwT = -20lg 10 = -20 дБ,

а это означает, что наклон этой асимптоты равен -20 дБ/дек.

Максимальная погрешность аппроксимации имеет место при wсопр=1/Т и равна 20lg » 3 дБ.

ЛЧХ апериодического звена построены на рис. 3.14.

Рис.3.14

Для интегрирующего звена

W(jw) = = ,

т.е. A(w)= и j(w)=-p/2, что отображено на рис. 3.14.

Обратим внимание на то, что интегрирующее звено дает постоянный сдвиг по фазе, равный -90° при всех значениях частот.

ЛАЧХ определяется выражением

-20lg A(w) = 20lg = 20lg1 — 20lg w. (3.61)

Выражение (3.61) — уравнение прямой линии, имеющей наклон -20 дБ/дек на плоскости ЛАЧХ при всех значениях частот. Эта линия проходит при w=1с-1 через ординату L(w)=0 дБ (см. рис. 3.14)

ЛЧХ других типовых динамических звеньев приведены в таблице 3.1.


Таблица 3.1.

Характеристика основных элементарных звеньев

  Тип звена
Характе ристика Пропорциональное (усилительное, безынерционное) Интегрирующее Апериодическое (инерционное) Колебательное Идеальное диф­ференцирующее звено Запаздывающее
Уравнение xвых = k× xвх, где k — коэффициент усиления или передачи звена , где Т — постоянная времени где k — коэффициент передачи звена, Т — постоянная времени где Т0,Т — постоянные времени, k – ко-эффициент передачи , где Т — постоянная времени xвых(t — t)= xвх,(t), где t — время запаз-дывания
Передаточная функция W(p) k T× p
Переходная характерис-тика h(t)
 
 

Продолжение табл. 3.1.

  Тип звена
Характе-ристика Пропорциональное (усилительное, безынерционное) Интегрирующее Апериодическое (инерционное) Колебательное Идеальное диф-ференцирующее звено Запаздывающее
ЛАЧХ L(w)
ФЧХ j(w)



Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
59.43%
НЕТ
40.57%
Проголосовало: 1166

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет