X-PDF

Численные методы решения обыкновенных дифференциальных уравнений

Поделиться статьей

Метод последовательных приближений. Изложим этот метод применительно к дифференциальному уравнению первого порядка

(18.1)

с начальным условием

(18.2)

Предполагается, что в некоторой окрестности точки М0 (x0, у0) уравнение (18.1) удовлетворяет условиям теоремы существования и единственности решения.

Будем строить, искомое решение у=у(х) для значений х≥х0 Случай х≤х0 вполне аналогичен. Интегрируя правую и левую части уравнения (18.1) в пределах от х0 до х, получим

или, в силу начального условия (18.2), будем иметь

(18.3)

Так как искомая функция у=у(х) находятся под знаком интеграла, то уравнение (18.3) является интегральным. Очевидно, решение интегрального уравнения (18.3) удовлетворяет дифференциальному уравнению (18.1) и начальному условию (18.2).

Для нахождения этого решения применим метод последовательных приближений. Заменяя в равенстве (18.3)неизвестную функцию у данным значением у0, получим первое приближение

Далее, подставив в равенстве (18.3) вместо неизвестной функции у найденную функцию y1, будем иметь второе приближение

Вообще, все дальнейшие приближения строятся по формуле

(18.4)

Геометрически последовательные приближения представляют собой кривые уп = уп(х) (n=1, 2,…), проходящие через общую точку M0(x0,y0).

Замечание. При методе последовательных приближений в качестве начального приближения у0, вообще говоря, можно выбирать любую функцию, достаточно близкую к точному решению у.

Представленная информация была полезной?
ДА
61.17%
НЕТ
38.83%
Проголосовало: 1509

Например, иногда выгодно в качестве у0 брать конечный отрезок ряда Тейлора искомого решения.

Заметим, что при пользовании методом последовательных приближений аналитичность правой части дифференциального уравнения не обязательна, поэтому метод этот можно применять и в тех случаях, когда разложение решения дифференциального уравнения в степенной ряд невозможно.

Пример 18.1. Методом последовательных приближений найти приближенное решение дифференциального уравнения

удовлетворяющее начальному условию

у(0)=1.

Решение. В качестве начального приближения возьмем у0 (х) = 1. Так как

то будем иметь

Аналогично

Подобным же образом получим

и т.д.


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
61.17%
НЕТ
38.83%
Проголосовало: 1509

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ЯТТС-Рекомендации по написанию отчета по учебной и производственной практики-Гостинечное дело

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 61.17% НЕТ 38.83% Проголосовало: 1509


Поделиться статьей

ЮУрГУ-вопросы

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 61.17% НЕТ 38.83% Проголосовало: 1509


Поделиться статьей

ЮУГУ-Отчет_ПП-Машины непрерывного транспорта

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 61.17% НЕТ 38.83% Проголосовало: 1509


Поделиться статьей

ЮУГУ- Курсовой проект по электронике

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 61.17% НЕТ 38.83% Проголосовало: 1509


Поделиться статьей

ЮУГУ-ВКР-Обеспечение требований охраны труда на рабочем месте слесаря-ремонтника 5 разряда

Поделиться статьей

Поделиться статьейПоделиться статьей Автор статьи Анастасия Задать вопрос Эксперт Представленная информация была полезной? ДА 61.17% НЕТ 38.83% Проголосовало: 1509


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет