X-PDF

Дисперсия и среднее квадратическое отклонение

Поделиться статьей

Названные числовые характеристики дают представление о разбросе случайных величин относительно их среднего значения.

Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

Для вычисления дисперсии можно использовать слегка преобразованную формулу

т.к. М(х), 2 и постоянные величины, то

.

Свойства дисперсии.

Свойство 1. Дисперсия постоянной равна нулю. По определению

Свойство 2. Постоянную можно выносить за знак дисперсии с возведением в квадрат.

Доказательство:

Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания.

Центрированная величина обладает двумя удобными для преобразования свойствами:

Свойство 3. Если случайные величины Х и У независимы, то

Доказательство. Обозначим . Тогда и . Поэтому

Во втором слагаемом в силу независимости случайных величин и свойств центрированных случайных величин

поэтому равенство можно продолжить

Пример. Если a и b – постоянные, то D(a x+b)=D(a x)+D(b)=

Дисперсия, как характеристика разброса случайной величины, имеет один недостаток. Если, например, Х – ошибка измерения имеет размерность ММ, то дисперсия имеет размерность . Поэтому часто предпочитают пользоваться другой характеристикой разброса – средним квадратическим отклонением, которое равно корню квадратному из дисперсии.

Среднее квадратическое отклонение имеет ту же размерность, что и сама случайная величина.

Представленная информация была полезной?
ДА
58.73%
НЕТ
41.27%
Проголосовало: 1037

Дисперсия числа появления события в схеме независимых испытаний.

Производится n независимых испытаний и вероятность появления события в каждом испытании равна р. Выразим, как и прежде, число появления события Х через число появления события в отдельных опытах

Так как опыты независимы, то и связанные с опытами случайные величины независимы. А в силу независимости имеем

   
Р 1-р р

Но каждая из случайных величин имеет закон распределения и , поэтому по определению дисперсии

,

где q=1-p

В итоге имеем ,

Среднее квадратическое отклонение числа появления событий в n независимых опытах равно .

Моменты случайных величин.

Помимо уже рассмотренных случайные величины имеют множество других числовых характеристик.

Начальным моментом k-го порядка случайной величины Х называется математическое ожидание k-ой степени этой случайной величины.

Центральным моментом k-го порядка случайной величины Х называется математическое ожидание k-ой степени соответствующей центрированной величины.

Легко видеть, что центральный момент первого порядка всегда равен нулю, центральный момент второго порядка равен дисперсии, т.к. .

Центральный момент третьего порядка дает представление об асимметрии распределения случайной величины. Моменты порядка выше второго употребляются сравнительно редко, поэтому мы ограничимся только самими понятиями о них.

Числовые характеристики системы случайных величин составляют числовые характеристики каждой из величин, входящих в систему, и числовые характеристики, дающие представление о характере связи между величинами. Числовые характеристики каждой из величин по отдельности определяются как числовые характеристики обычных случайных величин. Из числовых характеристик зависимости между величинами назовем лишь наиболее употребимую.

15. Дисперсия и среднеквадратическое отклонение дискретных и непрерывных случайных величин . свойства дисперсии.

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от своего математического ожидания

Для дискретной случайной величины дисперсия вычисляется по формуле

для непрерывной находят интегрированием

Если непрерывная величина заданная на интервале то дисперсия равна интегралу с постоянными пределами интегрирования


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.73%
НЕТ
41.27%
Проголосовало: 1037

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет