X-PDF

Электроемкость. Конденсаторы. Энергия электростатического поля.

Поделиться статьей

Электроемкостью (емкостью) C уединенного изолированного проводника называется физическая величина, равная отношению изменения заряда проводника q к изменению его потенциала f:
C = Dq/Df.

Электроемкость уединенного проводника зависит только от его формы и размеров, а также от окружающей его диэлектрической среды (e).
Единица измерения емкости в системе СИ называется Фарадой. Фарада (Ф) — это емкость такого уединенного проводника, потенциал которого повышается на 1 Вольт при сообщении ему заряда в 1 Кулон.

1 Ф = 1 Кл/1 В.

Конденсатором называют систему двух разноименно заряженных проводников, разделенных диэлектриком (например, воздухом).
Свойство конденсаторов накапливать и сохранять электрические заряды и связанное с ними электрическое поле характеризуется величиной, называемой электроемкостью конденсатора. Электроемкость конденсатора равна отношению заряда одной из пластин Q к напряжению между ними U:
C = Q/U.

В зависимости от формы обкладок, конденсаторы бывают плоскими, сферическими и цилиндрическими.

Соединение конденсаторов в батареи.

На практике конденсаторы часто соединяют в батареи — последовательно или параллельно.
При параллельном соединении напряжение на всех обкладках одинаковое
U1 = U2 = U3 = U = e, а емкость батареи равняется сумме емкостей отдельных конденсаторов C = C1 + C2 + C3.

При последовательном соединении заряд на обкладках всех конденсаторов одинаков Q1 = Q2 = Q3, а напряжение батареи равняется сумме напряжений отдельных конденсаторов U = U1 + U2 + U3.

Емкость всей системы последовательно соединенных конденсаторов рассчитывается из соотношения:
1/C = U/Q = 1/C1 + 1/C2 + 1/C3.

Емкость батареи последовательно соединенных конденсаторов всегда меньше, чем емкость каждого из этих конденсаторов в отдельности.

Энергия электростатического поля.

Энергия заряженного плоского конденсатора Eк равна работе A, которая была затрачена при его зарядке, или совершается при его разрядке.
A = CU2/2 = Q2/2С = QU/2 = Eк.

Поскольку напряжение на конденсаторе может быть рассчитано из соотношения:
U = E*d,
где E — напряженность поля между обкладками конденсатора, d — расстояние между пластинами конденсатора, то энергия заряженного конденсатора равна:
Eк = CU2/2 = ee0S/2d*E2*d2 = ee0S*d*E2/2 = ee0V*E2/2,
где V — объем пространства между обкладками конденсатора.
Энергия заряженного конденсатора сосредоточена в его электрическом поле.

1. Проводники в электростатическом поле

Поместим проводник в электростатическое поле (рис.23.1, а). На свободные заряды проводника со стороны поля действует сила, смещающая заряды. Электроны в металле движутся против поля, из точек с меньшим потенциалом в точки с б о льшим потенциалом . тем самым разность потенциалов выравнивается, заряды смещаться перестают. Это равновесное распределение зарядов в проводнике при помещении его в электростатическое поле устанавливается очень быстро, так что в состоянии равновесия разность потенциалов любых двух точек проводника равна нулю. Потенциал проводника всюду (внутри и на поверхности проводника) одинаков:

. (23.1)

Отсюда следует, что электростатического поля внутри проводника нет:

. (23.2)

Внутри проводника нет объёмных нескомпенсированных зарядов . заряды могут быть только на поверхности проводника. Это легко доказать с помощью теоремы Гаусса: если гауссова поверхность целиком лежит внутри проводника, то поток вектора через неё есть ноль, поскольку , значит

.

Поверхность проводника – эквипотенциальная, поэтому линии напряжённости к ней перпендикулярны (рис.23.1, б), а индуцированные на поверхности проводника свободные заряды разрывают линии напряжённости, так что внутри проводника поля нет.

Проводник может быть полым, – это несущественно, всё равно поля внутри объёма, ограниченного проводником, не будет (рис.23.2). На этом и основан принцип экранирования от внешних полей.

Представленная информация была полезной?
ДА
59.24%
НЕТ
40.76%
Проголосовало: 1126

Однако если внутри полости поместить заряды, то поле в ней, конечно, будет (рис.23.3). Линии поля разрываются толщей проводника и дальше уходят на бесконечность – поля нет в толще проводника.

Рис.23.4 даёт представление о распределении зарядов, индуцированных на поверхности сферического проводника положительным точечным зарядом. Такое явление называется электростатической индукцией.

Найдём напряжённость поля вблизи поверхности проводника, поверхностная плотность заряда которой равна , по теореме Гаусса для вектора электрического смещения:

.

В качестве гауссовой поверхности возьмём достаточно малый цилиндр, основания которого площадью S параллельны поверхности проводника, а образующие перпендикулярны (рис.23.5). Поток вектора равен нулю как через боковую поверхность (линии к ей параллельны), так и через основание, находящееся в проводнике (там поля нет ). Из-за малости S поток через внешнее основание, перпендикулярное линиям , равен .

Суммарный заряд внутри объёма, ограниченного поверхностью, – это заряд кусочка поверхности площадью S и равен , тогда

. (23.3)

Вблизи поверхности проводника величина вектора равна поверхностной плотности заряда.

Соответственно,

. (23.3а)

Электрические заряды по поверхности проводника распределяются неравномерно: поверхностная плотность заряда больше на выпуклостях и меньше на впадинах. Линии напряжённости всегда перпендикулярны эквипотенциальной поверхности проводника и сгущаются на острие, где зарядов больше (рис.23.6).

Одноимённо заряженные участки поверхности проводника отталкиваются. Найдём силу отталкивания, действующую в вакууме на элемент поверхности площадью dS со стороны остальной части поверхности проводника (рис.23.7). Для определённости будем считать, что заряд проводника положительный: .

Пусть – напряжённость поля, созданного зарядом всей поверхности проводника, кроме заряда этого малого участка . Сила, действующая на него со стороны остального заряда проводника, равна

.

Обозначим напряжённость поля, созданного самим зарядом . Вектор направлен от элемента поверхности. Тогда по принципу суперпозиции полное поле . Вне проводника поля и направлены одинаково, и , а внутри – противоположно, то есть .

С другой стороны, вне проводника напряжённость из (23.3а) равна

,

а внутри проводника поля нет:

.

Тогда

Найдём силу:

.


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
59.24%
НЕТ
40.76%
Проголосовало: 1126

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет