Умозаключения, которые мы рассматривали до сих пор, относились к т.н. дедуктивным умозаключениям или дедукции. В дедукции связь между посылками и заключением опирается на логический закон, и она всегда ведет к истинным выводам из истинных посылок.
Однако существует умозаключения другого типа, в которых связь между посылками и заключением опирается не на закон логики, а на некоторые фактические или психологические основания, не имеющие чисто формального характера. Такие умозаключения называют индуктивными умозаключениями или индукцией. В отличии от дедукции, индукция дает только вероятные, правдоподобные заключения
Примером индукции могут быть следующие умозаключения:
Аргентина – республика, Венесуэла – республика, Эквадор – республика.
Аргентина, Венесуэла, Эквадор – латиноамериканские страны.
________________________________________________
Все латиноамериканские страны – республики.
В Аргентине говорят на испанском языке, в Венесуэле и Эквадоре говорят на испанском языке
Аргентина, Венесуэла, Эквадор – латиноамериканские страны
______________________________________________________
Во всех латиноамериканских странах говорят на испанском языке.
Как мы видим на втором примере, индукция, даже при истинности посылок, может давать ошибочное следствие.
Особенность дедуктивных умозаключение в том, что они ведут от более общего знания к более частному. Особенность индуктивных умозаключений состоит в том, что они, как правило, ведут от более частного знания к более общему. Однако отождествлять переход от общего к частному с дедукцией, а от частного к общему с индукцией, как это иногда делается в учебниках, неверно. Например, умозаключение по аналогии представляет собой индуктивное умозаключения, хотя здесь нет перехода от частного к общему.
Структура индуктивного умозаключения может иметь следующий вид:
S1 есть Р
S2 есть Р
S3 есть Р
S1, S2, S3 составляют часть предметной области S
Все S есть P
Различают два основных вида индукции: полную и неполную. Полная индукция — это умозаключение, в котором общий вывод получен на основании единичных посылок о каждом предмете (каждом элементе) какого-то множества (класса, области, объема и пр.)
Например:
В понедельник было пасмурно
Во вторник было пасмурно
В среду было пасмурно
В четверг было пасмурно
В пятницу было пасмурно
В субботу было пасмурно
В воскресенье было пасмурно
Всю неделю было пасмурно
Несмотря на абсолютную достоверность, вывод по полной индукции в научном отношении малоценен так как имеет ограниченное употребление (ведь надо обязательно перечислить все предметы) и не дает нового знания. Строго говоря, полная индукция – это не умозаключение, а просто резюме.
Неполная индукция – это умозаключение, в котором общий вывод делается на основании посылок, лишь частично охватывающих ту или иную рассматриваемую предметную область.
Неполная индукция подразделяется на два вида: индукция через простое перечисление (или т.н. популярная индукция) и научная индукция.Популярная индукция делает вывод на основании первых, случайно попавшихся случаев. Научная индукция – это индукция, основанная на подборе фактов или применении какого-то метода, увеличивающего вероятность правильного вывода.
Примером научной индукции могут служить методы установления причинной связи, разработанные еще в конце XVI века английским ученым Ф. Бэконом.
Выделяют четыре метода установления причинной связи между явлениями: метод единственного сходства, метод единственного различия, метод остатков и метод сопутствующих изменений.
Метод единственного сходства состоит: если некоторое обстоятельство всегда предшествует явлению, в то время как другие обстоятельства меняются, то, вероятно, именно это всегда предшествующее обстоятельство есть причина явления.
Схематически:
Обстоятельства ABC предшествовали явлению X
Обстоятельства ADE предшествовали явлению X
Обстоятельства AGF предшествовали явлению X
Вероятно именноA причина X
Так, например, была установлена причина малярии. Из различных обстоятельств, которые ей сопутствовали – определенные растения, особенности химического состава воды, наличие комаров и т.д., только комары сопутствовали малярии всегда, тогда как другие обстоятельства менялись.
Метод единственного различия: если некоторое обстоятельство предшествует явлению, и при отсутствии этого обстоятельства – явления нет, причем все другие обстоятельства остаются неизменными, то, вероятно, именно это обстоятельство – причина явления.
Схематически:
Обстоятельства ABCD предшествуют явлению X
При обстоятельствах BCD явления X нет
Вероятно, именно A причина X
Например, когда было замечено, что именно при отсутствии кислорода не происходит горения, тогда как другие обстоятельства оставались неизменными, люди пришли к выводу, что именно кислород есть причина горения.
Метод остатков: Если некий группа обстоятельств предшествует группе явлений и известно, что часть этих обстоятельств причина части явлений, то, вероятно, оставшаяся часть обстоятельств причина оставшейся части явлений.
Схематически:
Обстоятельства ABC предшествуют явлениям XYZ
Известно, что A причина X, B причина Y.
Вероятно, C причина Z.
Так, например, был открыт химический элемент литий. Взвешивалась доза определенного химического состава. Общей вес этой дозы был большим, чем вес ее предполагаемых составных частей. Избыток веса свидетельствовал о наличии примеси.
Метод сопутствующих изменений: Если изменение одного из обстоятельств приводит к изменению явления, а остальные обстоятельства остаются неизменными, то, вероятно, именно изменяющееся обстоятельство – причина явление.
Схематически:
Обстоятельства ABC предшествуют явлениям X.
При изменении A имеет место изменение X.
BC остаются неизменными.
Вероятно, A причина X.
Например, если по мере увеличения температуры газа увеличивается его объем, а все другие обстоятельства остаются неизменными, то можно сделать вывод, что между температурой и объемом существует причинная связь.
Одним из видов индуктивного умозаключения является умозаключение по аналогии.
Умозаключение по аналогии (или просто аналогия) — это умозаключение, в котором на основе сходства двух объектов по каким-то одним параметрам делается вывод об их сходстве также по другим параметрам.
Схематически:
Объект A имеет свойства a, b, c.
Объект B имеет свойства a и b.
Вероятно, объект B обладает свойством c.
Например, на Марсе и на Земле есть атмосфера. На Марсе и на Земле есть вода. Следовательно, вероятно, на Марсе, как и на Земле, есть жизнь.
Разумеется, в аналогии, как и в любой другой индукции, вывод не является достоверным.
Еще одним видом индукции является вывод, сделанный на основании подтверждения следствия. Из правила условно-категорического силлогизма мы знаем, что рассуждение, построенное по схеме
A ® B
B
______
A
является неправильным и не дает гарантированного вывода. Однако в науке и практике такое рассуждение постоянно используется для подтверждения каких-то гипотез. Если следствия из гипотезы подтверждаются, то, вероятно, гипотеза, верна. Например, если человек, совершивший преступление, должен был бы быть в такое-то время в таком-то месте, то присутствие гражданина X в этом месте и в это время может вызвать подозрение, что именно он совершил это преступление. Хотя, доказательством, на основании которого можно было бы гражданина X осудить, такие обстоятельства быть не могут.