X-PDF

Китайская теорема об остатках (теория)

Поделиться статьей

Пусть — попарно взаимно простые модули (то есть каждые два взаимно просты между собой), – остатки. Тогда существует такой x, что

Вообще говоря, такой x не единственный, поскольку от прибавления к нему величины остатки по модулю останутся теми же.

Но если поставить дополнительное условие , то такой x существует и единственный.

Примечание.

То, что модули попарно взаимно просты – существенная деталь. Например, предположим, что . Тогда искомое число должно быть одновременно и чётным, и нечётным, что невозможно.

Сначала, для примера, предположим, что у нас два модуля: .

Тогда представим искомое число в виде суммы двух чисел: одно даёт остаток 1 при делении на 4 и кратно 7, а другое даёт остаток 3 при делении на 7 и кратно 4.

Тогда сумма этих чисел даст искомые остатки.

В качестве первого числа можем взять 21, в качестве второго числа 24. Сложив эти числа, получим 45.

Поскольку для единственности решения поставлено условие , заменим число 45 его остатком от деления на 28, то есть числом 17.

Можно проверить, что оно действительно даёт указанные остатки при делении на 4 и на 7.

Теперь — построение решения для китайской теоремы об остатках в общем виде.

Представленная информация была полезной?
ДА
58.78%
НЕТ
41.22%
Проголосовало: 1014

Здесь будем строить его похожим образом, то есть в виде суммы n слагаемых, каждое из которых даёт требуемый остаток по своему модулю, и при этом делится на остальные модули.

Первое слагаемое обеспечит остаток по первому модулю, второе – по второму, и так далее.

Обозначим .

Из условия теоремы вытекает, что НОД

Следовательно, для каждого i существует di такое, что .

Найти такое di можно, если решить сравнение

(иначе говоря, найти частное решение диофантова уравнения).

Итак, для каждого i выполнено условие . Поэтому .

Тогда число – искомое. Имеется в виду, что мы возьмём остаток от деления данного числа на произведение .

В самом деле, это число:

даёт остаток r 1 при делении на m 1 (поскольку первое слагаемое даёт указанный остаток, а остальные слагаемые делятся на m 1),

даёт остаток r 2 при делении на m 2 (поскольку первое слагаемое даёт указанный остаток, а остальные слагаемые делятся на m 2),

и так далее.


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.78%
НЕТ
41.22%
Проголосовало: 1014

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет