X-PDF

Когерентные источники света. Условия для наибольшего усиления и ослабления волн

Поделиться статьей

Сложение волн, распространяющихся в среде, определяется сложением в разных точках пространства соответствующих колебаний. Наиболее простой случай сложения электромагнитных волн наблюдается тогда, когда их частоты одинаковы и направле­ния электрических векторов совпадают. В этом случае амплитуду результирующей волны можно найти по формуле (5.30), которую для амплитуды напряженности электрического поля запишем в виде

(19.1)

где Dj— разность фаз слагаемых волн (колебаний).

В зависимости от типа источников света результат сложения волн может быть принципиально различным.

Сначала рассмотрим сложение волн, идущих от обычных источников света (лампа, пламя, Солнце и т. п.). Каждый такой источник представляет совокупность огромного количества излучающих атомов. Отдельный атом излучает электромагнитную волну приблизительно в течение 10-8 с, причем излучение есть событие случайное, поэтому и разность фаз Dj в формуле (19.1) принимает случайные значения. При этом среднее по излучениям всех атомов значение cos Dj равно нулю. Вместо (19.1) получаем усредненное равенство для тех точек пространства, где складыва­ются две волны, идущие от двух обычных источников света:

(19.2)

Так как интенсивность волны пропорциональна квадрату амплитуды [см. (14.60)], то из (19.2) имеем условие сложения интенсивностей I 1 и I 2 волн:

(19.3)

Это означает, что для интенсивностей излучений, исходящих от двух (или более) обычных световых источников, выполняется достаточно простое правило сложения: интенсивность суммарного излучения равна сумме интенсивностей слагаемых волн. Это наблюдается в повседневной практике: освещенность от двух ламп равна сумме освещенностей, создаваемых каждой лампой в отдельности.

Если Dj остается неизменной во времени, наблюдается интерференция света. Интенсивность результирующей волны принимает в разных точках пространства значения от минимального до некоторого максимального.

Интерференция света возникает от согласованных, когерентных источников, которые обеспечивают постоянную во времени разность фаз Dj у слагаемых волн в различных точках. Волны, отвечающие этому условию, называют когерентными.

Интерференция могла бы быть осуществлена от двух синусо­идальных волн одинаковой частоты, однако на практике создать такие световые волны невозможно, поэтому когерентные волны получают, «расщепляя» световую волну, иду­щую от источника.

Такой способ применяется в методе Юнга. На пути сферической волны, идущей от источника S, устанавливается непрозрачная преграда с двумя щелями (рис. 19.1). Точки волновой поверхности, дошедшей до преграды, становятся центрами когерентных вторичных волн, поэтому щели можно рассматривать как когерентные источники. На экране Э наблюдается интерференция.

Рис. 19.1 Рис. 19.2

Другой метод заключается в получении мнимого изображения S источника S (рис. 19.2) с помощью зеркала (зеркало Ллойда). Источники S и S являются когерентными. Они создают условия для интерференции волн. На рисунке показаны два интерферирующих луча, попадающие в некоторую точку А экрана Э.

Так как время t излучения отдельного атома ограничено, то разность хода d лучей 1 и 2 при интерференции не должна быть слишком большой, в противном случае в точке А встретятся неко­герентные волны. Наибольшее значение d для интерференции определяется через скорость света и время излучения атома:

d = сt = 3 • 108 • 10 8м = 3м. (19.4)

Представленная информация была полезной?
ДА
58.65%
НЕТ
41.35%
Проголосовало: 989

Реальные источники состоят из множества беспорядочно излучающих атомов, поэтому время t¢ их согласованного излучения на много порядков меньше времени излучения t отдельного атома. Вследствие этого реальная разность хода d¢ интерферирующих лучей должна быть на много порядков меньше, чем величина d, определяемая формулой (19.4).

Расчет интерференционной картины можно сделать, используя формулу (19.1), если известны разность фаз интерферирующих волн и их амплитуды. Практический интерес представляют частные случаи: наибольшее усиление волн — максимум интенсивности (max), наибольшее ослабление — минимум интенсивности (mim).

Отметим, что условия максимумов и минимумов интенсивностей удобнее выражать не через разность фаз, а через разность хода волн, так как пути, проходимые когерентными волнами при интерференции, обычно известны. Покажем это на примере интерференции плоских волн I и II, векторы которых перпендикулярны плоскости чертежа (рис. 19.3).

Колебания векторов этих волн в некоторой точке В, удаленной на расстояния x l и х 2 соответственно от каждого источника, происходят по гармоническому закону

(19.5)

Для общности вывода предположим, что волны распространяются в разных средах с показателями преломления п 1 и п 2. Скорости распространения волн соответственно равны
u 1 = с/п 1 и u 2 = с/п 2, где с — скорость света в вакууме. Тогда из (19.5) следует выражение для разности фаз:

(19.6)

Так как длина волны в вакууме l. = Тс, то вместо (19.6) имеем

(19.7)

Произведение геометрического пути волны на показатель преломления среды, т. е. хп, называют оптической длиной пути, а разность этих путей

(19.8)

оптической разностью хода волн.

На основании (19.7) и (19.8) получим связь между разностью фаз и оптической разностью хода интерферирующих волн:

(19.9)

Используя законы сложения колебаний (см. § 5.3.) и соотношение (19.9), получаем условия максимума и минимума интенсивности света при интерференции — соответственно

(19.10)

(19.11)

где k = 0, 1, 2,….

Следовательно, максимум при интерференции наблюдается в тех точках, для которых оптическая разность хода равна целому числу длин волн (четному числу полуволн), минимум — в тех точках, для которых оптическая разность хода равна нечетному числу полуволн.


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.65%
НЕТ
41.35%
Проголосовало: 989

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет