Значения рН некоторых жидких систем организма.
Нормальное функционирование живых организмов возможно только в условиях определенного постоянства рН и других параметров их внутренней среды. Это постоянство поддерживается соответствующими буферными системами.
Большинство органических реакций включает несколько последовательных (элементарных) стадий. Детальное описание совокупности этих стадий называется механизмом. Механизм реакции — гипотеза, предлагаемая для объяснения экспериментальных данных. Он может уточняться и даже меняться с появлением новых фактов и углублением знаний.
Общая скорость сложной химической реакции определяется (лимитируется) скоростью ее наиболее медленной стадии, а скорость составляющих элементарных реакций — их энергией активации Еа. Последняя необходима для осуществления эффективного столкновения молекул, приводящего к взаимодействию. Ее можно определить также как энергию, необходимую для достижения системой переходного состояния, иначе называемого активированным комплексом, превращение которого в продукты реакции происходит уже самопроизвольно. Чем меньше величина энергии активации реакции, тем выше ее скорость.
|
|
Использование катализатора существенно снижает скорость реакции за счёт понижения энергии активации из-за образования активированного промежуточного комплекса. В живых организмах роль высокоспецифичных катализаторов выполняют ферменты.
Фермент карбоангидраза катализирует биохимические реакции гидратации альдегидов, сложных эфиров, а также диоксида углерода. Жизненная важность этого фермента определяется тем, что он регулирует кислотность крови, а посредством этого (конечно, наряду с другими факторами) – интенсивность дыхательного процесса. Конкретная реакция, которую катализирует карбоангидраза, представляет собой равновесное превращение воды и диоксида углерода в угольную кислоту.
Н2О + СО2 ↔ Н2СО3 ↔ HCО3– + Н+
Именно эта реакция используется организмом для удаления из клеток углекислого газа, образовавшегося в них в результате жизнедеятельности. Некатализируемая гидратация СО2 протекает слишком медленно, чтобы обеспечивать его эффективный транспорт от тканей к легким. Активность же карбоангидразы поражает воображение: одна молекула фермента катализирует каждую минуту гидратацию»3,6×107 молекул диоксида углерода.
Принципиальная схема работы карбоангидразы заключается в следующем. Карбоангидраза представляет собой белок, состоящий из фрагментов 260 аминокислот. Молекула воды теряет протон на активном участке фермента, который выступает как основание. При этом образуется сопряженное основание – гидроксид-ион, который присоединяется к молекуле диоксида углерода точно так же, как это происходит в реакциях гидроксид-иона с другими карбонильными соединениями. По существу, это присоединение представляет собой кислотно-основную реакцию Льюиса.
|
|
Кислотность воды, однако, не столь высока, чтобы протон от нее легко было бы оторвать. Поэтому карбоангидраза нуждается в помощи. Эту помощь ей оказывает кофактор — один из микроэлементов, присутствующих в организме, а именно ион Zn2+. Как кислота Льюиса он координируется по атому кислорода молекулы воды и существенно облегчает тем самым отрыв протона активным участком карбоангидразы. На модельных реакциях было определено влияние иона цинка как кофактора. Этот ион увеличивает скорость реакции гидратации карбонильного соединения более чем в 6 млн. раз по сравнению с некатализируемой реакцией.
Реакционная способность всегда должна рассматриваться только по отношению к реакционному партнеру. Само вещество при этом называют субстратом, а действующее на него соединение (реакционную частицу) – реагентом. Субстратом, как правило, называют то вещество, в котором у атома углерода происходит разрыв старой и образование новой связи. В биохимических процессах реагентами считают ферменты, а вещества, подвергающиеся их действию, субстратами. В ходе химического превращения обычно затрагивается не вся молекула, а только ее часть – реакционный центр.
Типы реакций в органической химии
Многообразие органических реакций приводит к целесообразности их классификации по следующим признакам:
1. По электронной природе реагентов (нуклеофильные, электрофильные, свободнорадикальные реакции).
Нуклеофильные реагенты – это одно- или многоатомные анионы или молекулы, имеющие центры с повышенной электронной плотностью. К ним относятся такие анионы и молекулы, как HO—, RO—, Cl—, Br—, RCOO—, CN—, R—, NH3, C2H5OH и т.д.
Электрофильные реагенты – это катионы, простые или сложные молекулы, которые сами по себе или же в присутствии катализатора обладают повышенным сродством к электронной паре или отрицательно заряженным центрам молекул. К ним относятся катионы H+, Cl+, +NO2, +SO3H, R+ и молекулы со свободными орбиталями AlCl3, ZnCl2 и т.п.
Свободные радикалы – это электронейтральные частицы, имеющие неспаренный электрон, например: Cl·, ·NO2.
2. По изменению числа частиц в ходе реакции (замещение, присоединение, отщепление, разложение, ОВР и др.).
В случае реакций замещения в молекуле один атом (или группа атомов) замещается другим атомом (или группой атомов), в результате чего образуются новые соединения:
СН3–СН3 + С12 ® СН3–СН2С1 + НC1
При протекании реакций присоединения из двух (или нескольких) молекул образуется одно новое вещество:
CH2 = CH2 + HBr → CH2Br–СH3
В результате реакции отщепления образуется новое органическое вещество, содержащее кратную связь:
СН3–СН2С1 + NaOH(спиртовой р-р) ® СН2 = СН2 + NaC1 + Н2О
Реакции разложения приводят к образованию из одного вещества двух или более веществ более простого строения:
НСООН → СО2 + Н2
3. По частным признакам (гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, карбоксилирование и декарбоксилирование, енолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.).
4. По механизмам элементарных стадий реакций (нуклеофильное замещение SN, электрофильное замещение SE, свободнорадикальное замещение SR, парное отщепление, или элиминирование Е, нуклеофильное или электрофильное присоединение AdE и AdN и т. д.).
Рассмотрим несколько примеров.
|
|
Пример 1. При действии на организм больших доз гидразина или его производных наблюдаются нервные расстройства. Какова химическая основа действия гидразина, если известно, что он реагирует с коферментом пиридоксальфосфатом?
Решение. Пиридоксальфосфат — гетероциклическое соединение, содержащее в цикле наряду с другими заместителями альдегидную группу. Гидразин NH2–NH2 как нуклеофильный реагент взаимодействует с карбонильным атомом углерода. Поляризованная p-связь карбонильной группы легко разрывается, и между карбонильным атомом углерода и атомом азота возникает ковалентная связь донорно-акцепторного типа за счет пары электронов атома азота молекулы гидразина.
![]() |
Образующийся диполярный ион в результате перехода протона от положительно заряженного атома азота (кислотный центр) к аниону (основный центр) превращается в нейтральное соединение. В этом соединении у атома углерода содержатся одновременно две электроноакцепторные группы, поэтому оно неустойчиво и переходит в более стабильное состояние путем отщепления молекулы воды. Конечным продуктом описанной реакции присоединения-отщепления является гидразон пиридоксальфосфата.
Образование гидразона приводит к блокированию альдегидной группы пиридоксальфосфата, что нарушает его взаимодействие как кофермента с аминогруппой глутаминовой кислоты. Эта реакция является одним из этапов превращения в организме глутаминовой кислоты в g-аминомасляную. Блокирование же кофермента гидразином приводит к недостатку g-аминомасляной кислоты, тормозящей проведение нервных импульсов.
Пример 2. В процессе метаболизма в живых организмах фумаровая кислота превращается в яблочную. Каким путем можно получить яблочную кислоту из фумаровой в условиях in vitro?
Решение. Фумаровая кислота — ненасыщенная двухосновная кислота, которую можно рассматривать как замещенный алкен. Яблочная кислота принадлежит к насыщенным двухосновным гидроксикислотам.
Переход от фумаровой кислоты к яблочной осуществляют путем присоединения воды по кратной связи, т. е. с помощью реакции гидратации. Гидратацию алкенов проводят в разбавленном водном растворе сильной кислоты, например серной. Кислота служит источником электрофильной частицы — протона Н+.
|
|
Электронная плотность углерод-углеродной p-связи в молекуле фумаровой кислоты уменьшена вследствие электроноакцепторного действия двух карбоксильных групп. Поэтому гидратацию фумаровой кислоты осуществляют в сравнительно жестких условиях (нагревание с разбавленным водным раствором кислоты при температуре 150-200 °С).
Гидратация фумаровой кислоты протекает по обычному для алкенов механизму электрофильного присоединения АЕ. Протон взаимодействует с кратной связью в молекуле фумаровой кислоты. Образовавшийся карбокатион атакуется нуклеофильным реагентом – молекулой воды. Алкилоксониевый ион, являясь сильной кислотой, отщепляет протон (возврат катализатора). В результате образуется продукт реакции – яблочная кислота.
Гидратация фумаровой кислоты in vitro приводит к образованию рацемата – смеси равных количеств двух энантиомеров яблочной кислоты. В организме эта реакция катализируется ферментом фумаразой, для которого характерна строгая пространственная специфичность, что ведет к образованию только L-яблочной кислоты. Это пример селективного (избирательного) протекания реакции.
Направление химической реакции определяется совокупностью многих факторов.
Статические факторы. Реакционная способность соединений существенно зависит от распределения в их молекулах электронной плотности, которое в свою очередь определяется электронными эффектами заместителей и наличием сопряженных и ароматических фрагментов. Характерная для большинства соединений неравномерность в распределении электронной плотности является причиной появления в молекуле реакционных центров, предопределяющих направление атаки тем или иным реагентом (электронный фактор).
Пространственное строение молекулы определяет пространственный фактор, когда из-за относительно большого пространственного объема заместителей, окружающих реакционный центр, к нему может быть затруднен подход атакующей частицы. При этом реакция либо не будет осуществляться совсем, либо будет идти по иному направлению с участием другого, более доступного реакционного центра, если он имеется в молекуле.
Динамические факторы. Многостадийные процессы обычно включают стадии промежуточного образования нестабильных интермедиатов, обладающих высокой реакционной способностью. Часто можно предположить образование не одного, а нескольких интермедиатов. Реакция предпочтительно будет проходить через стадию образования относительно более устойчивого интермедиата. Относительная устойчивость интермедиатов, в частности часто выступающих в качестве высокореакционных промежуточных частиц карбокатионов, карбанионов и свободных радикалов, определяется возможностью делокализации в этих частицах электронной плотности.
