X-PDF

Первый способ. Метод Бернулли.

Поделиться статьей

Это уравнение линейное относительно  и . Положим , где  и  – вспомогательные искомые функции. Заметим, что если , то один из множителей (  или ) можно выбрать произвольно (но не равным нулю). Тогда  и уравнение примет вид

.

Раскроем скобки и сгруппируем члены, содержащие :

, .   (1)

Выберем функцию  таким образом, чтобы скобка в (1) обращалась в нуль. Тогда уравнение равносильно следующей системе:

(2)   (3)

Уравнение (2) – дифференциальное уравнение с разделяющимися переменными. Решим его.

, , , , , ,

(берем простейшее частное решение этого уравнения, считая произвольную постоянную С, возникающую при взятии интеграла, равной нулю).

Подставляем найденное значение  в уравнение (3). Имеем

, .

Интегрируя, находим

.

Окончательно, общее решение исходного уравнения

.

Ответ: Общее решение: .

Второй способ. Метод Лагранжа.

Предварительно решаем однородное линейное уравнение, т.е. уравнение  – уравнение первого порядка с разделяющимися переменными.

, , , , , .

Метод вариации произвольной постоянной состоит в том, что постоянную С в полученном решении заменяем функцией , т.е. полагаем  и решение исходного уравнения ищем в виде .

Находим производную: . Подставляем значения  и  в исходное уравнение:

, ,

, , .

Подставляя найденное выражение  в искомое общее решение, получим

.

Естественно, такое же решение было получено методом Бернулли.

Представленная информация была полезной?
ДА
58.69%
НЕТ
41.31%
Проголосовало: 990

 

 

Уравнение Бернулли

Определение. Дифференциальное уравнение вида , , ,  (или ) называется уравнением Бернулли.

Если , то уравнение линейное, а при  – с разделяющимися переменными.

Способ решения. Подстановка  сводит уравнение Бернулли к линейному уравнению, и поэтому его можно решать как линейное дифференциальное уравнение первого порядка, т.е. подстановкой  или методом вариации произвольной постоянной. Но на практике уравнение Бернулли удобнее решать подстановкой  сразу же, без сведения его к линейному.

Пример. Найти частное решение уравнения , удовлетворяющее заданному начальному условию .

Решение:

Данное уравнение является уравнением Бернулли (). Положим ,  и уравнение примет вид

.

Сгруппируем члены, содержащие :

.   (1)

Уравнение (1) равносильно следующей системе:

(2)   (3)

Решим уравнение (2) – дифференциальное уравнение с разделяющимися переменными.

, , , , , , .

Подставляем найденное значение  в уравнение (3). Имеем, ,  – уравнение с разделяющимися переменными. Решим его.

, , , , , .

Окончательно, общее решение исходного уравнения

.

Найдем частное решение, которое удовлетворяет заданному начальному условию, т.е. при  значение . Подставив в общее решение, получим

, , , .

Следовательно, искомое частное решение .

Ответ: Частное решение: .


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.69%
НЕТ
41.31%
Проголосовало: 990

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет