X-PDF

Принцип Кантора (принцип вложенных отрезков).

Поделиться статьей

Определение. Пусть a и b произвольные элементы из R, причем a&lt .b. Подмножество X множества R, удовлетворяющее условию выполняется неравенство a , будем называть отрезком и обозначать .

Определение. Пусть и множества действительных чисел таких, что , для любых , тогда система отрезков { } называется системой вложенных отрезков и для них выполняются включения:

Теорема 4.4.1. (о вложенных отрезках). Для всякой системы вложенных отрезков существует по крайней мере одно число, которое входит в каждый из этих отрезков.

Доказательство. ►Возьмем два множества A= { и B ={ Они не пусты и при любых n и m выполняется неравенство .Действительно, если . Если . Таким образом, классы A и B удовлетворяют аксиоме непрерывности и, следовательно, существует число λ такое, что для любого n, то есть λ

Представленная информация была полезной?
ДА
61.05%
НЕТ
38.95%
Проголосовало: 1566

Утверждение доказанной теоремы и называется принципом Кантора, а множество, удовлетворяющее этому принципу называется непрерывном по Кантору. Мы можем сказать, что множество непрерывное по Дедекинду будет непрерывным по Кантору. Можно доказать и обратное (смотри Л.Д. Кдрявцев. Математический анализ. Т.1 Высшая школа, 1989).


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
61.05%
НЕТ
38.95%
Проголосовало: 1566

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

Методичка 13098

Поделиться статьей

Методические указания по подготовке образовательных программ, проведению практических работ, самостоятельному изучению дисциплины или подготовке к проверке знаний.


Поделиться статьей

Методичка 13016

Поделиться статьей

Методические указания по подготовке образовательных программ, проведению практических работ, самостоятельному изучению дисциплины или подготовке к проверке знаний.


Поделиться статьей

Методичка 12893

Поделиться статьей

Методические указания по подготовке образовательных программ, проведению практических работ, самостоятельному изучению дисциплины или подготовке к проверке знаний.


Поделиться статьей

Методичка 12827

Поделиться статьей

Методические указания по подготовке образовательных программ, проведению практических работ, самостоятельному изучению дисциплины или подготовке к проверке знаний.


Поделиться статьей

Методичка 12830

Поделиться статьей

Методические указания по подготовке образовательных программ, проведению практических работ, самостоятельному изучению дисциплины или подготовке к проверке знаний.


Поделиться статьей

Методичка 12835

Поделиться статьей

Методические указания по подготовке образовательных программ, проведению практических работ, самостоятельному изучению дисциплины или подготовке к проверке знаний.


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет