X-PDF

Степенная функция

Поделиться статьей

Функция где х – переменная величина, a – заданное число, называется степенной функцией.

Если то – линейная функция, ее график – прямая линия (см. параграф 4.3, рис. 4.7).

Если то – квадратичная функция, ее график – парабола (см. параграф 4.3, рис. 4.8).

Если то ее график – кубическая парабола (см. параграф 4.3, рис. 4.9).

Степенная функция

Это обратная функция для

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: x = 0 – единственный нуль.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет.

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции симметричен графику кубической параболы относительно прямой y = x и изображен на рис. 5.1.

 
 

Рис. 5.1

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция четная.

4. Периодичность функции: непериодическая.

5. Нули функции: единственный нуль x = 0.

6. Наибольшее и наименьшее значения функции: принимает наименьшее значение для x = 0, оно равно 0.

7. Промежутки возрастания и убывания: функция является убывающей на промежутке и возрастающей на промежутке

8. График функции (для каждого n Î N) «похож» на график квадратичной параболы (графики функций изображены на рис. 5.2).

Рис. 5.2

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: x = 0 –единственный нуль.

6. Наибольшее и наименьшее значения: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции (для каждого ) «похож» на график кубической параболы (графики функций изображены на рис. 5.3).

 
 

Рис. 5.3

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: нулей не имеет.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является убывающей в области определения.

8. Асимптоты: (ось Оу) – вертикальная асимптота .

(ось Ох) – горизонтальная асимптота.

9. График функции (для любого n) «похож» на график гиперболы (графики функций изображены на рис. 5.4).

 
 

Рис. 5.4

Степенная функция

Представленная информация была полезной?
ДА
58.69%
НЕТ
41.31%
Проголосовало: 1041

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция четная.

4. Периодичность функции: непериодическая.

5. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

6. Промежутки возрастания и убывания: функция является возрастающей на и убывающей на

7. Асимптоты: x = 0 (ось Оу) – вертикальная асимптота .

y = 0 (ось Ох) – горизонтальная асимптота.

8. Графиками функций являются квадратичные гиперболы (рис. 5.5).

 
 

Рис. 5.5

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция не обладает свойством четности и нечетности.

4. Периодичность функции: непериодическая.

5. Нули функции: x = 0 –единственный нуль.

6. Наибольшее и наименьшее значения функции: наименьшее значение, равное 0, функция принимает в точке x = 0 . наибольшего значения не имеет.

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. Каждая такая функция при определенном показателе является обратной для функции при условии

9. График функции «похож» на график функции при любом n и изображен на рис. 5.6.

Рис. 5.6

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: x = 0 – единственный нуль.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции изображен на рис. 5.7.

 
 

Рис. 5.7

Пример 1. Построить график функции:

1) 2)

Решение. 1) Для построения графика данной функции используем правила преобразования графиков:

а) строим график функции (он показан на рис. 5.7) .

б) график функции получаем из графика функции путем параллельного переноса его на одну единицу вправо по оси Ох и на две единицы вниз по оси Оу .

в) график исходной функции получаем из графика функции оставляем ту часть графика, которая находится справа от оси Оу и на оси Оу, другую – отбрасываем (на рис. 5.8 она показана пунктиром). Оставшуюся часть графика дополняем симметричной ей относительно оси Оу (рис. 5.8).

Рис. 5.8

2) Преобразуем функцию к виду Заметим, что График этой функции получаем путем следующих преобразований:

а) строим график функции

б) график получаем из предыдущего симметричным отображением относительно оси Оу .

в) график функции получаем из предыдущего смещением на 4 единицы вправо по оси Ох .

г) график заданной функции получаем из графика функции параллельным переносом его на две единицы вниз по оси Оу (рис. 5.9).

 
 

Рис. 5.9


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.69%
НЕТ
41.31%
Проголосовало: 1041

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет