X-PDF

Таблицы для перевода процентных долей в величины центрального угла для расчета критерия «угловое преобразование» Фишера

Поделиться статьей

(из книги: Ермолаев О. Ю. Математическая статистика для психологов [Текст]: учебник / О. Ю. Ермолаев. — 5-е изд. — М.: МПСИ: Флинта, 2011. — 336 с. — С.308-312)

Величины угла φ (в радианах) дляразных процентных долей:

% доля %, сотый знак
                   
Значения
0,0 0,000 0,020 0,028 0,035 0,040 0,045 0,049 0,053 0,057 0,060
0,1 0,063 0,066 0,069 0,072 0,075 0,077 0,080 0,082 0,085 0,087
0,2 0,089 0,092 0,094 0,096 0,098 0,100 0,102 0,104 0,106 0,108
0,3 0,110 0,111 0,113 0,115 0,117 0,118 0,120 0,122 0,123 0,125
0,4 0,127 0,128 0,130 0,131 0,133 0,134 0,136 0,137 0,139 0,140
0,5 0,142 0,143 0,144 0,146 0,147 0,148 0,150 0,151 0,153 0,154
0,6 0,155 0,156 0,158 0,159 0,160 0,161 0,163 0,164 0,165 0,166
0,7 0,168 0,169 0,170 0,171 0,172 0,173 0,175 0,176 0,177 0,178
0,8 0,179 0,180 0,182 0,183 0,184 0,185 0,186 0,187 0,188 0,189
0,9 0,190 0,191 0,192 0,193 0,194 0,195 0,196 0,197 0,198 0,199
                                   
% доля %, последний десятичный знак
                   
Значения
  0,200 0,210 0,220 0,229 0,237 0,246 0,254 0,262 0,269 0,277
  0,284 0,291 0,298 0,304 0,311 0,318 0,324 0,330 0,336 0,342
  0,348 0,354 0,360 0,365 0,371 0,376 0,382 0,387 0,392 0,398
  0,403 0,408 0,413 0,418 0,423 0,428 0,432 0,437 0,442 0,446
  0,451 0,456 0,460 0,465 0,469 0,473 0,478 0,482 0,486 0,491
  0,495 0,499 0,503 0,507 0,512 0,516 0,520 0,524 0,528 0,532
  0,536 0,539 0,543 0,547 0,551 0,555 0,559 0,562 0,566 0,570
  0,574 0,577 0,581 0,584 0,588 0,592 0,595 0,599 0,602 0,606
  0,609 0,613 0,616 0,620 0,623 0,627 0,630 0,633 0,637 0,640
  0,644 0,647 0,650 0,653 0,657 0,660 0,663 0,666 0,670 0,673
  0,676 0,679 0,682 0,686 0,689 0,692 0,695 0,698 0,701 0,704
  0,707 0,711 0,714 0,717 0,720 0,723 0,726 0,729 0,732 0,735
  0,738 0,741 0,744 0,747 0,750 0,752 0,755 0,758 0,761 0,764 /
  0,767 0,770 0,773 0,776 0,778 0,781 0,784 0,787 0,790 0,793
  0,795 0,798 0,801 0,804 0,807 0,809 0,812 0,815 0,818 0,820
                                   

% доля %, последний десятичный знак
                   
Значения
  0,823 0,826 0,828 0,831 0,834 0,837 0,839 0,842 0,845 0,847
  0,850 0,853 0,855 0,858 0,861 0,863 0,866 0,868 0,871 0,874
  0,876 0,879 0,881 0,884 0,887 0,889 0,892 0,894 0,897 0,900
  0,902 0,905 0,907 0,910 0,912 0,915 0,917 0,920 0,922 0,925
  0,927 0,930 0,932 0,935 0,937 0,940 0,942 0,945 0,947 0,950
  0,952 0,955 0,957 0,959 0,962 0,964 0,967 0,969 0,972 0,974
  0,976 0,979 0,981 0,984 0,986 0,988 0,991 0,993 0,996 0,998
  1,000 1,003 1,005 1,007 1,010 1,012 1,015 1,017 1,019 1,022
  1,024 1,026 1,029 1,031 1,033 1,036 1,038 1,040 1,043 1,045
  1,047 1,050 1,052 1,054 1,056 1,059 1,061 1,063 1,066 1,068
  1,070 1,072 1,075 1,077 1,079 1,082 1,084 1,086 1,088 1,091
  1,093 1,095 1,097 1,100 1,102 1,104 1,106 1,109 1,111 1,113
  1,115 1,117 1,120 1,122 1,124 1,126 1,129 1,131 1,133 1,135
  1,137 1,140 1,142 1,144 1,146 1,148 1,151 1,153 1,155 1,157
  1,159 1,161 1,164 1,166 1,168 1,170 1,172 1,174 1,177 1,179
  1,182 1,183 1,185 1,187 1,190 1,192 1,194 1,196 1,198 1,200
  1,203 1,205 1,207 1,209 1,211 1,213 1,215 1,217 1,220 1,222
  1,224 1,226 1,228 1,230 1,232 1,234 1,237 1,239 1,241 1,243
  1,245 1,247 1,249 1,251 1,254 1,256 1,258 1,260 1,262 1,264
  1,266 1,268 1,270 1,272 1,274 1,277 1,279 1,281 1,283 1,285
  1,287 1,289 1,291 1,293 1,295 1,297 1,299 1,302 1,304 1,306
  1,308 1,310 1,312 1,314 1,316 1,318 1,320 1,322 1,324 1,326
  1,328 1,330 1,333 1,335 1,337 1,339 1,341 1,343 1,345 1,347
  1,349 1,351 1,353 1,355 1,357 1,359 1,361 1,363 1,365 1,367
  1,369 1,371 1,374 1,376 1,378 1,380 1,382 1,384 1,386 1,388
  1,390 1,392 1,394 1,396 1,398 1,400 1,402 1,404 1,406 1,408
  1,410 1,412 1,414 1,416 1,418 1,420 1,422 1,424 1,426 1,428
  1,430 1,432 1,434 1,436 1,438 1,440 1,442 1,444 1,446 1,448
  1,451 1,453 1,455 1,457 1,459 1,461 1,463 1,465 1,467 1,469
  1,471 1,473 1,475 1,477 1,479 1,481 1,483 1,485 1,487 1,489
  1,491 1,493 1,495 1,497 1,499 1,501 1,503 1,505 1,507 1,509
  1,511 1,513 1,515 1,517 1,519 1,521 1,523 1,525 1,527 1,529
                     
                                   

% доля %, последний десятичный знак
                   
Значения
  1,531 1,533 1,535 1,537 1,539 1,541 1,543 1,545 1,547 1,549
  1,551 1,553 1,555 1,557 1,559 1,561 1,563 1,565 1,567 1,569
  1,571 1,573 1,575 1,577 1,579 1,581 1,583 1,585 1,587 1,589
  1,591 1,593 1,595 1,597 1,599 1,601 1,603 1,605 1,607 1,609
  1,611 1,613 1,615 1,617 1,619 1,621 1,623 1,625 1,627 1,629
  1,631 1,633 1,635 1,637 1,639 1,641 1,643 1,645 1,647 1,649
  1,651 1,653 1,655 1,657 1,659 1,661 1,663 1,665 1,667 1,669
  1,671 1,673 1,675 1,677 1,679 1,681 1,683 1,685 1,687 1,689
  1,691 1,693 1,695 1,697 1,699 1,701 1,703 1,705 1,707 1,709
  1,711 1,713 1,715 1,717 1,719 1,721 1,723 1,725 1,727 1,729
  1,731 1,734 1,736 1,738 1,740 1,742 1,744 1,746 1,748 1,750
  1,752 1,754 1,756 1,758 1,760 1,762 1,764 1,766 1,768 1,770
  1,772 1,774 1,776 1,778 1,780 1,782 1,784 1,786 1,789 1,791
  1,793 1,795 1,797 1,799 1,801 1,803 1,805 1,807 1,809 1,811
  1,813 1,815 1,817 1,819 1,821 1,823 1,826 1,828 1,830 1,832
  1,834 1,836 1,838 1,840 1,842 1,844 1,846 1,848 1,850 1,853
  1,855 1,857 1,859 1,861 1,863 1,865 1,867 1,869 1,871 1,873
  1,875 1,878 1,880 1,882 1,884 1,886 1,888 1,890 1,892 1,894
  1,897 1,899 1,901 1,903 1,905 1,907 1,909 1,911 1,913 1,916
  1,918 1,920 1,922 1,924 1,926 1,928 1,930 1,933 1,935 1,937
  1,939 1,941 1,943 1,946 1,948 1,950 1,952 1,954 1,956 1,958
  1,961 1,963 1,965 1,967 1,969 1,971 1,974 1,976 1,978 1,980
  1,982 1,984 1,987 1,989 1,991 1,993 1,995 1,998 2,000 2,002
  2,004 2,006 2,009 2,011 2,013 2,015 2,018 2,020 2,022 2,024
  2,026 2,029 2,031 2,033 2,035 2,038 2,040 2,042 2,044 2,047
  2,049 2,051 2,053 2,056 2,058 2,060 2,062 2,065 2,067 2,069
  2,071 2,074 2,076 2,078 2,081 2,083 2,085 2,087 2,090 2,092
  2,094 2,097 2,099 2,101 2,104 2,106 2,108 2,111 2,113 2,115
  2,118 2,120 2,122 2,125 2,127 2,129 2,132 2,134 2,136 2,139
  2,141 2,144 2,146 2,148 2,151 2,153 2,156 2,158 2,160 2,163
  2,165 2,168 2,170 2,172 2,175 2,177 2,180 2,182 2,185 2,187
  2,190 2,192 2,194 2,197 2,199 2,202 2,204 2,207 2,209 2,212
                                   

% доля %, последний десятичный знак
                   
Значения
  2,214 2,217 2,219 2,222 2,224 2,227 2,229 2,231 2,234 2,237
  2,240 2,242 2,245 2,247 2,250 2,252 2,255 2,258 2,260 2,263
  2,265 2,268 2,271 2,273 2,276 2,278 2,281 2,284 2,286 2,289
  2,292 2,294 2,297 2,300 2,302 2,305 2,308 2,310 2,313 2,316
  2,319 2,321 2,324 2,327 2,330 2,332 2,335 2,338 2,341 2,343
  2,346 2,349 2,352 2,355 2,357 2,360 2,363 2,366 2,369 2,372
  2,375 2,377 2,380 2,383 2,386 2,389 2,392 2,395 2,398 2,401
  2,404 2,407 2,410 2,413 2,416 2,419 2,422 2,425 2,428 2,431
  2,434 2,437 2,440 2,443 2,447 2,450 2,453 2,456 2,459 2,462
  2,465 2,469 2,472 2,475 2,478 2,482 2,485 2,488 2,491 2,495
  2,498 2,501 2,505 2,508 2,512 2,515 2,518 2,522 2,525 2,529
  2,532 2,536 2,539 2,543 2,546 2,550 2,554   2,561 2,564
  2,568 2,572 2,575 2,579 2,583 2,587 2,591 2,594 2,598 2,602
  2,606 2,610 2,614 2,618 2,622 2,626 2,630 2,634 2,638 2,642
  2,647 2,651 2,655 2,659 2,664 2,668 2,673 2,677 2,681 2,686
  2,691 2,295 2,700 2,705 2,709 2,714 2,719 2,724 2,729 2,734
  2,739 2,744 2,749 2,754 2,760 2,765 2,771 2,776 2,782 2,788
  2,793 2,799 2,805 2,811 2,818 2,824 2,830 2,837 2,844 2,851
  2,858 2,865 2,872 2,880 2,888 2,896 2,904 2,913 2,922 2,931
99,0 2,941 2,942 2,943 2,944 2,945 2,946 2,948 2,949 2,950 2,951
99,1 2,952 2,953 2,954 2,955 2,956 2,957 2,958 2,959 2,960 2,961
99,2 2,963 2,964 2,965 2,966 2,967 2,968 2,969 2,971 2,972 2,973
99,3 2,974 2,975 2,976 2,978 2,979 2,980 2,981 2,983 2,984 2,985
99,4 2,987 2,988 2,989 2,990 2,992 2,993 2,995 2,996 2,997 2,999
99,5 3,000 3,002 3,003 3,004 3,006 3,007 3,009 3,010 3,012 3,013
99,6 3,015 3,017 3,018 3,020 3,022 3,023 3,025 3,027 3,028 3,030
99,7 3,032 3,034 3,036 3,038 3,040 3,041 3,044 3,046 3,048 3,050
99,8 3,052 3,054 3,057 3,059 3,062 3,064 3,067 3,069 3,072 3,075
99,9 3,078 3,082 3,085 3,089 3,093 3,097 3,101 3,107 3,113 3,122
100,0 3,142                  
                                   

1.10. Таблица вероятностей Р для биномиального распределения при р = q = 0,5

(из книги: Ермолаев О. Ю. Математическая статистика для психологов [Текст]: учебник / О. Ю. Ермолаев. — 5-е изд. — М.: МПСИ: Флинта, 2011. — 336 с. — С.294-295)

Примечания к таблице:

* В таблице все величины даны без начального нуля и последующей запятой, так что, если в таблице дано число, например 013, — то это число следует читать как 0,013.

** Знаком + в таблице обозначены значения близкие к 1.

Т2                                
  031*         +**                    
              +                  
                +                
                  +              
                    +            
                      +          
                      +          
                        +        
                          + +    
                            + + +
                            + + +
                              + +
                                +
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 

Приложение 2. Глоссарий

1. Альтернативная гипотеза — это гипотеза о значимости различий. Она обозначается как Н1. Альтернативная гипотеза — это то, что мы, как правило, хотим доказать . поэтому иногда ее называют экспериментальной гипотезой.

2. Вариационный (статистический) ряд — таблица, первая строка которой содержит в порядке возрастания значения признака, а вторая — меры возможности их появления (абсолютные частоты, или относительные частоты, или процентные частоты).

3. Вероятностная зависимость (стохастическая связь) — это такая связь между явлениями или событиями, при которой появление одного из событий изменяет вероятность появления другого события.

4. Вероятность — мера возможности появления признака (число, не превышающее единицу).

5. Гистограмма — график в виде столбиковой диаграммы, который отражает зависимость между значениями признака и мерами возможности их появления.

6. Диаграмма рассеяния — график, представляющий собой множество (совокупность) точек в двумерном пространстве . координатами этих точек являются значения двух признаков. Такой график отражает зависимость между этими двумя признаками.

7. Дискриминантный анализ («классификация с обучением») предсказывает принадлежность объектов (испытуемых) к одному из известных классов (шкала наименований) по измеренным метрическим (дискриминантным) переменным. Дискриминантные переменные должны быть измерены в количественной шкале, зависимая переменная — в шкале наименований.

8. ДисперсияD=Sx2 — это средний квадрат отклонений всех значений признака от среднего арифметического.

9. Дисперсионный анализ — это анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов. Признаки должны быть измерены в количественной шкале (интервальной или пропорциональной) и иметь нормальное распределение.

10. Доверительная вероятность — вероятность, с которой принимается нулевая гипотеза, или иначе: вероятность того, что нулевая гипотеза является истинной.

11. Зависимые выборки (связанные выборки) — это одна и та же группа людей, у которых были измерены одни и те же признаки в двух (или более) различных ситуациях, например, «до — после», «фон — стресс».

12. Измерение — это приписывание числовых форм объектам или событиям в соответствии с определенными правилами.

13. Квантилизначения признака, которые делят выборку на определенное количество равных частей. Наиболее распространенные квантили — это медиана . квартили Q1, Q2, Q3 (делят выборку испытуемых на 4 равные части) . децили D1, D2, D3, D4, D5, D6, D7, D8, D9 (делят выборку испытуемых на 10 равных частей) . процентили Р1 ……….Р99 (делят выборку испытуемых на 100 равных частей).

14. Кластерный анализ («классификация без обучения»): по измеренным характеристикам у множества объектов (испытуемых) либо по данным об их попарном сходстве (различии) разбивает это множество объектов на группы, в каждой из которых находятся объекты, более похожие друг на друга, чем на объекты других групп.

15. Корреляционное отношение — является мерой связи для оценки нелинейных взаимозависимостей между признаками, измеренными по интервальной или пропорциональной шкале.

16. Коэффициент асимметрииAs — параметр, характеризующий асимметричность распределения по сравнению с нормальным распределением.

17. Коэффициент вариации или коэффициент вариативностиV — параметр, показывающий соотношение стандартного отклонения и среднего арифметического.

18. Коэффициент контингенции или тетрахорический коэффициент или коэффициент четырехклеточной сопряженностиφ —является мерой связи между признаками, измеренными по дихотомической шкале наименований.

19. Коэффициент линейной корреляции Пирсонаrxy —является мерой связи для оценки линейных взаимозависимостей между признаками, измеренными по интервальной или пропорциональной шкале.

20. Коэффициент ранговой корреляции Спирменаρ = rs — является мерой связи между признаками, измеренными по шкале порядка или при сочетании шкалы порядка с интервальной или пропорциональной шкалой.

21. Коэффициент эксцессаEx — параметр, характеризующий выпуклость распределения по сравнению с нормальным распределением.

22. Критерий вообще — это решающее правило, обусловливающее поведение в ситуации выбора.

23. Критерий ВилкоксонаT — непараметрический критерий различий, который позволяет оценить различия между двумя зависимыми выборками: направление и выраженность изменений во втором замере по сравнению с первым. Применяется для сравнения признаков, измеренных по шкалам порядка, интервальной или пропорциональной.

24. Критерий Колмогорова-Смирноваλ — непараметрический критерий, который позволяет оценить различия между двумя распределениями: найти точку, в которой они наиболее сильно различаются. Применяется для сравнения распределений признаков, измеренных по шкалам порядка, интервальной или пропорциональной.

25. Критерий МакнамарыM — непараметрический критерий, который позволяет оценить различия между двумя зависимыми выборками: два замера признака, измеренного по дихотомической шкале наименований и любым другим, если их результаты могут быть сведены к дихотомической шкале.

26. Критерий Манна-УитниU — непараметрический критерий различий, который позволяет оценить различия между двумя независимыми выборками: направление и выраженность значений признака. Применяется для сравнения признаков, измеренных по шкалам порядка, интервальной или пропорциональной.

Представленная информация была полезной?
ДА
58.71%
НЕТ
41.29%
Проголосовало: 1039

27. Критерий Стьюдентаt — параметрический критерий различий, который позволяет сравнить два любых параметра распределений, полученных в двух выборках. Применяется для сравнения признаков, измеренных по интервальной или пропорциональной шкале при условии нормального распределения признака.

28. Критерий угловое преобразование Фишераφ * — непараметрический критерий различий, который позволяет оценить различия между двумя процентными долями в двух независимых выборках. Применяется для сравнения признаков, измеренных по дихотомической шкале наименований и любым другим, если их результаты могут быть сведены к дихотомической шкале.

29. Критерий ФишераF — параметрический критерий различий, который позволяет сравнить две дисперсии, полученные в двух выборках. Применяется для сравнения признаков, измеренных по интервальной или пропорциональной шкале при условии нормального распределения признака.

30. Критерий хи-квадрат Пирсонаχ 2 — непараметрический критерий, который позволяет сравнить два распределения признака: согласованность изменений в распределениях. Таким методом оцениваются различия между распределениями, а также взаимосвязь между признаками. Применяется для сравнения признаков, измеренных по шкале наименований, шкалам порядка, интервальной или пропорциональной.

31. Кумулята — график, отражающий зависимость между значениями признака и соответствующими им накопленными частотами. с которой отвергается нулевая гипотеза (истинная) и принимается альтернативная гипотеза (ложная),

32. МедианаМе — это значение признака, которое делит выборку испытуемых на две равные части: 50 % испытуемых имеют значения признака меньше медианы, 50 % испытуемых имеют значения признака больше медианы . медиана является частным видом квантилей.

33. Мера связи — числовая величина, отражающая тесноту (силу для всех типов измерений) и направленность (для качественно-количественного и количественного измерения) зависимости между признаками.

34. Многомерное шкалирование выявляет шкалы как критерии, по которым поляризуются объекты при их субъективном попарном сравнении.

35. Множественный регрессионный анализ предсказывает значения метрической «зависимой» переменной по множеству известных значений «независимых» переменных, измеренных у множества объектов (испытуемых). Все переменные должны быть измерены в количественной шкале.

36. МодаМо — это значение признака, которое имеет наибольшую частоту.

37. Мощность критерия — его способность критерия правильно отбрасывать ложную гипотезу. Она определяется эмпирическим путем.

38. Независимые выборки (не связанные выборки) — это две выборки, составленные из разных людей, у которых были измерены одни и те же признаки по одним и тем же методикам.

39. Непараметрические критерии— критерии, не включающие в формулу расчета параметры распределения и основанные на оперировании частотами или рангами (например, критерий знаков, критерий Ван-дер-Вардена и др.).Непараметрические критерииприменяются для любых шкал и любых распределений признаков.

40. Нулевая гипотеза — это гипотеза об отсутствии зависимости между признаками или отсутствии различий между выборками. Она обозначается как Н0.

41. Ошибка первого рода (р-уровень) — вероятность, с которой отвергается нулевая гипотеза, являющаяся истинной, и принимается альтернативная гипотеза, являющаяся ложной.

42. Параметрические критерии служат для проверки гипотез о параметрах распределений или для их оценивания, то есть, является ли параметр, полученный на выборке испытуемых, и параметром генеральной совокупности. Параметрические критерии применяются для оценки параметров признаков, измеренных по интервальной и пропорциональной шкале при условии нормального распределения признаков.

43. Параметры распределений — числовые характеристики, отражающие основные тенденции выраженности и изменчивости исследуемых признаков в исследуемой выборке.

44. Полигон частот или многоугольник частот — график в виде прямой ломаной линии, отражающий зависимость между значениями признака и мерами возможности их появления.

45. Распределение — график, отражающий зависимость между значениями признака и мерами возможности их появления (вероятностями или частотами).

46. Регрессия — график в виде линии, которая отражает зависимость между условными средними значениями одной переменной и значениями другой переменной.

47. Репрезентативность выборки — свойство выборочной совокупности, заключающееся в ее способности адекватно представлять основные характеристики генеральной совокупности (воспроизводятся основные свойства генеральной совокупности).

48. Среднее арифметическое значение — это то значение признака, которое отражает средний уровень выраженности признака в выборке испытуемых.

49. Стандартное отклонение (или среднеквадратическое отклонение) — — это среднее отклонение каждого значения признака от среднего арифметического.

50. Статистическая гипотеза — это предположения о свойствах и параметрах генеральной совокупности, различии выборок или зависимости между признаками.

51. Статистический критерий — правило, обеспечивающее надежное поведение, т. е. принятие истинной и отклонение ложной гипотезы с высокой вероятностью. Слова статистический критерий обозначают также метод расчета определенного числа и само это число.

52. Уровень значимо­сти — вероятность ошибочного отклонения нулевой гипотезы.

53. Факторный анализ направлен на выявление структуры переменных как совокупности факторов, каждый из которых — это скрытая, обобщающая причина взаимосвязи группы переменных. Надежные результаты получаются, если переменные измерены в количественной шкале (интервальной или пропорциональной). Число испытуемых должно превышать число переменных (или, по крайней мере, должно быть равно ему).

54. Число степеней свободыν = df — количество возможных направлений изменчивости переменной.

55. Шкала наименований (номинативная, номинальная) является результатом использования при измерении метода регистрации . относится к качественному измерению.

56. Шкала порядка (порядковая, ординальная) является результатом использования при измерении метода упорядочивания . относится к качественно-количественному измерению.

57. Шкала равных интервалов (интервальная) является результатом измерения методом соотнесения (с эталонной единицей измерения), нулевая точка шкалы произвольна и не указывает на отсутствие измеряемого свойства . является метрической шкалой и относится к количественному измерению.

58. Шкала равных отношений (пропорциональная) является результатом измерения методом соотнесения (с эталонной единицей измерения), существует абсолютный нуль, который означает отсутствие измеряемого свойства . является метрической шкалой и относится к количественному измерению.

Приложение 3. Англо-русский словарь статистических терминов

Словарь позаимствован из пособия, написанного А. Д. Наследовым. (Наследов А.Д. Математические методы психологического исследования: Анализ и интерпретация данных [Текст]: учебное пособие / А. Д. Наследов. — 3-е изд., стереотип. — СПб.: Речь, 2007. — 392 с.)

Этот словарь может быть полезен при работе с компьютерными пакетами математико-статистического анализа (SРSS или STATISTICA).

1- Sample K-S Test— критерий (тест) Колмо­горова-Смирнова
1-tailed— односторонний (направленный) уровень значимости
2-tailed— двусторонний (ненаправленный) уровень значимости
Absolute value— абсолютное значение
Actual (value, group) — действительное, реаль­ное (значение, группа)
Add — добавить
Adjusted— исправленный (улучшенный)
Advanced (Model)— специальная, более совер­шенная (модель)
Agglomeration schedule— последовательность агломерации (объединения)
ALSCAL— программа неметрического мно­гомерного шкалирования
Amalgamation— слияние, объединение
Analyze— анализировать
ANOVA— дисперсионный анализ
Approach— подход
Assume— принятие (допущение, предположение)
Asymmetric— асимметричная
Asymp. Sig.— примерный (приближенный) уровень значимости
Average Linkage— средней связи (метод клас­теризации)
Averaged— усредненный
Axis— ось (координат)
Bartletts Test of Sphericity — тест сферичнос­ти Бартлета
Based on— основанный на (исходящий из)
Beta-Coefficient— стандартизированный ко­эффициент регрессии
Between (objects, variables)— между (объекта­ми, переменными)
Between Groups Linkage — межгрупповой (средней) связи (метод кластеризации)
Between-Group — межгрупповой
Between-Subject— между объектами (межгруп­повой)
Binary Measures— количественные показате­ли (меры) для бинарных данных
Binomial Test— биномиальный критерий
Bivariate — двумерный
Boxs M-test— М-тест Бокса
Canonical Analysis— канонический анализ
Case— случай (испытуемый)
Casewise deletion— исключение из анализа случая (строки), в котором имеется про­пуск хотя бы одного значения
Categories— категории (номинативного при­знака)
Categorization— операция выделения интер­валов квантования (или значений пере­менной) при построении гистограммы и составлении таблицы частот
Cell— ячейка (таблицы)
Central Tendency— центральная тенденция (мера)
Centroid — центроид
Chi I — хи-квадрат
Chi-square (Test)— хи-квадрат (критерий)
Classify— классифицировать
Cluster Combined— объединенные кластеры
Cluster Method— метод кластеризации
Coefficient (s)— коэффициент(ы)
Column— столбец
Combine— объединение, объединять
Communality— общность
Compare— сравнивать
Compare Means— сравнение средних
Comparison — сравнение
Complete Linkage — полной связи (метод кла­стеризации)
Compute— вычисление, вычислять
Conditionality— условность, обусловленность (подгонки)
Confidence (Interval) — доверительный (ин­тервал)
Constant— константа
Contrast— контраст
Controlling for…— контролировать (фиксиро­вать) для…
Convergence— сходимость (при подгонки)
Corrected (Model)— исправленная, скоррек­тированная (модель)
Correlate— коррелировать (определять совме­стную изменчивость)
Correlation matrix— корреляционная матрица
Count Measure— количественный показатель (мера) частоты
Covariance— ковариация
Covariate— ковариата
Criteria (Criterion)— условие (критерий)
Crosstabulation (Crosstab)— сопряженность, кросстабуляция
Cumulative frequencies — —кумулятивные (накоп­ленные) частоты
Custom Model— специальная модель
Cut Point точка деления
Data— данные
Data Editor— редактор (таблица) исходных данных в SPSS
Data Reduction— сокращение данных (метод)
Define (Groups)— определение, задание (групп)
Degrees of freedom (df)— число степеней сво­боды
Deletion— удаление (исключение)
Dendrogram— дендрограмма (древовидный график)
Density Function— функция плотности веро­ятности
Dependent Sample— зависимая выборка
Dependent-Samples T Test — критерий t-Стьюдента для зависимых выборок
Derived— производный
Descriptive Statistics— описательные статис­тики
df— число степеней свободы (сокр.)
Difference— разность, различие
Dimension — шкала
Discriminant Analysis— дискриминантный анализ
Dispersion— изменчивость
Dissimilarity — различие
Distance— расстояние
Distribution — распределение
Distribution Function — функция распределе­ния (вероятности)
Effect— влияние (фактора)
Eigenvalue— собственное значение
Enter— исходный (метод)
Entry— включение
Epsilon Corrected— с Эпсилон-коррекцией
Equal — одинаковые
Equal Variances— одинаковые (эквивалент­ные) дисперсии
Equality (of Variances) — эквивалентность,

Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.71%
НЕТ
41.29%
Проголосовало: 1039

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет