Условием устойчивости сжатого стержня является неравенство:
Здесь допускаемое напряжение по устойчивости [σ уст ] — не постоянная величина, как это было в условиях прочности, а зависящая от следующих факторов:
1) от длины стержня, от размеров и даже от формы поперечных сечений,
2) от способа закрепления концов стержня,
3) от материала стержня.
Как и всякая допускаемая величина, [σ уст ] определяется отношением опасного для сжатого стержня напряжения к коэффициенту запаса. Для сжатого стержня опасным является так называемое критическое напряжение σ кр, при котором стержень теряет устойчивость первоначальной формы равновесия.
Поэтому
Величину коэффициента запаса в задачах устойчивости принимают несколько большей, чем значение коэффициента запаса прочности, то есть если k =1÷2, то kуст =2÷5.
Допускаемое напряжение по устойчивости можно связать с допускаемым напряжением по прочности:
В этом случае ,
где σт – опасное с точки зрения прочности напряжение (для пластичных материалов это предел текучести, а для хрупких – предел прочности на сжатие σ вс).
Коэффициент φ< .1 и потому называется коэффициентом снижения основного допускаемого напряжения, то есть [σ] по прочности, или иначе коэффициентом продольного изгиба.
С учетом сказанного условие устойчивости сжатого стержня принимает вид:
Численные значения коэффициента φ выбираются из таблиц в зависимости от материала и величины гибкости стержня , где:
μ – коэффициент приведенной длины (зависит от способов закрепления концов стержня), ℓ — геометрическая длина стержня,
i – радиус инерции поперечного сечения относительно той из главных центральных осей сечения, вокруг которой будет происходить поворот поперечных сечений после достижения нагрузкой критического значения.
Коэффициент φ изменяется в диапазоне 0≤φ≤1, зависит,как уже говорилось, как от физико-механических свойств материала, так и от гибкости λ. Зависимости между φ и λ для различных материалов представляются обычно в табличной форме с шагом ∆λ=10.
При вычислении значений φ для стержней, имеющих значения гибкости не кратные числу 10, применяется правило линейной интерполяции.
Значения коэффициента φ в зависимости от гибкости λ для материалов
На основании условия устойчивости решаются три вида задач:
- Проверка устойчивости.
- Подбор сечения.
- Определение допускаемой нагрузки (или безопасной нагрузки, или грузоподъемности стержня: [ F ]=φ[σ] А.
Наиболее сложным оказывается решение задачи о подборе сечения, поскольку необходимая величина площади сечения входит и в левую, и в правую часть условия устойчивости:
Только в правой части этого неравенства площадь сечения находится в неявном виде: она входит в формулу радиуса инерции , который в свою очередь включен в формулу гибкости
, от которой зависит значение коэффициента продольного изгиба φ. Поэтому здесь приходится использовать метод проб и ошибок, облеченный в форму способа последовательных приближений:
1 попытка: задаемся φ1 из средней зоны таблицы, находим , определяем размеры сечения, вычисляем
, затем гибкость
, по таблице определяем
и сравниваем со значением φ1. Если
, то:
2 попытка: принимаем , находим
, определяем размеры сечения, вычисляем
, затем гибкость
, по таблице определяем
, и если
, то:
3 попытка: принимаем , находим
, определяем размеры сечения, вычисляем
, затем гибкость
, по таблице определяем
, и т.д.
Процесс приближений продолжается до тех пор, пока разница не окажется менее 5%.
