X-PDF

Законы Ньютона. Силы в механике: сила всемирного тяготения, сила тяжести, вес тела, сила упругости, сила Архимеда, сила Стокса.

Поделиться статьей

Механика

Механическое движение. Траектория движения. Пройденный путь. Скорость движения. Ускорение движения. Тангенциальное ускорение. Нормальное ускорение. Связь между ними.

Механическим движением тела называется изменение его положения в пространстве относительно других тел с течением времени. Траектория движения – это линия, которую описывает тело в результате своего движения. Пройденный путь – это отрезок траектории, пройденный точкой за некоторый промежуток времени. Скорость — характеристика движения точки, при равномерном движении численно равная отношению пройденного пути s к промежутку времени t, за который этот путь пройден

Ускорение движения — производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени.

Тангенциальное ускорение — Составляющая ускорения, направленная вдоль скорости, Она характеризует изменение скорости по модулю.

           

Нормальное ускорение — составляющая ускорения, направленная к центру кривизны траектории, т.е. перпендикулярно (нормально)

скорости. Она характеризует изменение скорости по направлению. Здесь R — радиус кривизны траектории в данной точке.

Тангенциальное и нормальное ускорение взаимноперпендикулярны, поэтому модуль полного ускорения

          

2.

Законы Ньютона. Силы в механике: сила всемирного тяготения, сила тяжести, вес тела, сила упругости, сила Архимеда, сила Стокса.

Первый закон Ньютона: Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона: В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

  Третий закон Ньютона: Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу,       направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

 

Гравитация — универсальное фундаментальное взаимодействие между всеми материальными телами. В рамках классической механикигравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

Здесь — гравитационная постоянная, равная примерно 6,6725×10-11 м³/(кг·с²).

Сила тяжести — действующая на любую материальную частицу, находящуюся вблизи земной поверхности, сила Р, определяемая как геометрическая сумма силы притяжения Земли F и центробежной (переносной) силы инерции Q учитывающей эффект суточного вращения Земли. Направление С. т. является направлением вертикали в данной точке земной поверхности.             

Сила упругости — сила, возникающая при деформации тела и противодействующая этой деформации.

Закон Гука: Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации.

где — жёсткость тела, — величина деформации

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа)(называемая силой Архимеда) где — плотность жидкости (газа), — ускорение свободного падения, а — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центрутяжести этого объёма.

Закон Стокса, определяющий силу сопротивления F, испытываемую твёрдым шаром при его медленном поступательном движении в неограниченной вязкой жидкости: , где μ коэффициент вязкости жидкости, r — радиус шара и υ его скорость. Эта формула выведена Дж. Г. Стоксом в 1851. С. з. справедлив лишь для малых Рейнольдса чисел  Re ≤ 1. По С. з. можно определить скорость осаждения мелких капель тумана, коллоидных частиц, частиц ила и других мелких частиц. Предельную скорость υ пр падения шарика малых размеров в вязкой жидкости находят по формуле

где ρ’ и ρ плотность жидкости и вещества шарика, g — ускорение свободного падения.

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым.

Движение тела по окружности с постоянной по модулю скоростью — это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

Положение тела на окружности определяется радиус-вектором , проведенным из центра окружности. Модуль радиус-вектора равен радиусу окружности R (рис. 1).

За время Δ t тело, двигаясь из точки А в точку В, совершает перемещение , равное хорде АВ, и проходит путь, равный длине дуги l.

Радиус-вектор поворачивается на угол Δ φ. Угол выражают в радианах.

Представленная информация была полезной?
ДА
59.24%
НЕТ
40.76%
Проголосовало: 1126

Скорость движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью. Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δ t, за который эта дуга пройдена:

 

Скалярная физическая величина, численно равная отношению угла поворота радиус-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью:

В СИ единицей угловой скорости является радиан в секунду (рад/с).

При равномерном движении по окружности угловая скорость и модуль линейной скорости — величины постоянные: ω = const . υ = const.

Положение тела можно определить, если известен модуль радиус-вектора и угол φ, который он составляет с осью Ox (угловая координата). Если в начальный момент времени t 0 = 0 угловая координата равна φ 0, а в момент времени t она равна φ, то угол поворота Δ φ радиуса-вектора за время равен . Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности:

Оно позволяет определить положение тела в любой момент времени t. Учитывая, что , получаем:

— формула связи между линейной и угловой скоростью.

Промежуток времени Τ, в течение которого тело совершает один полный оборот, называется периодом вращения:

 

где N — число оборотов, совершенных телом за время Δ t.

За время Δ t = Τ тело проходит путь . Следовательно,

Величина ν, обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения: Следовательно,

Вращательное движение — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной.

Угловое ускорение — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.

Вектор углового ускорения направлен вдоль оси вращения (в сторону при ускоренном вращении и противоположно — при замедленном).

При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости по времени, то есть

Существует связь между тангенциальным и угловым ускорениями: ,где R — радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени. Угловое ускорение измеряется в рад/с2.

 

Динамика вращательного движения тел вокруг неподвижной оси: момент силы относительно оси, плечо силы, момент инерции точечного тела и системы тел, основной закон динамики вращательного движения.

Момент силы — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.   где — сила, действующая на частицу, а — радиус-вектор частицы.

ПЛЕЧО СИЛЫ — кратчайшее расстояние от данной точки (центра) до линии действия силы.

Момент инерции — скалярная физическая величина, мера  инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).Единица измерения СИ: кг·м².

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

где: mi — масса i -й точки, ri — расстояние от i -й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

где: — масса малого элемента объёма тела , — плотность, — расстояние от элемента до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

 


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
59.24%
НЕТ
40.76%
Проголосовало: 1126

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет