X-PDF

Метод полуреакций

Поделиться статьей

Как показывает само название, этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления с последующим суммированием их в общее уравнение. В качестве примера составим уравнение той же реакции, которую использовали при объяснении метода электронного баланса. При пропускании сероводорода Н2S через подкисленный раствор перманганата калия КМnО4 малиновая окраска исчезает и раствор мутнеет. Опыт показывает, что помутнение раствора происходит в результате образова­ния элементной серы,т.е. протекания процесса:

Н2S → S + 2H+

Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части схемы отнять два электрона, после чего можно стрелку заменить на знак равенства:

Н2S — 2е = S + 2H+

Это первая полуреакция — процесс окисления восстановителя Н2S.

Обесцвечивание раствора связано с переходом иона MnO4 (он имеет малиновую окраску) в ион Mn2+ (практически бесцветный и лишь при большой концентрации имеет слабо-розовую окраску), что можно выразить схемой

MnO4→ Mn2+

В кислом растворе кислород, входящий в состав ионов МnО4, вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записыва­ем так:

MnO4 + 8Н+→ Мn2+ + 4Н2О

Чтобы стрелку заменить на знак равенства, надо уравнять и заряды. Посколь­ку исходные вещества имеют семь положительных зарядов (7+), а конечные — два положительных(2+), то для выполнения условия сохранения зарядов надо к левой части схемы прибавить пять электронов:

MnO4+ 8Н+ + 5e= Mn2+ + 4Н2О

Это вторая полуреакция — процесс восстановления окислителя, т.е. перманганат-иона

Для составления общего уравнения реакции надо уравнения полуреакций почленно сложить, предварительно уравняв числа отданных и полученных электронов.В этом случае по правилам нахождения наименьшего кратного определяют соответствующие множители, на которые умножаются уравнения полуреакций.Сокращенно запись проводится так:

И, сократив на 10Н+, окончательно получим

2S + 2MnO4 + 6H+ = 5S + 2Mn2+ + 8Н2О

Проверяем правильность составленного в ионной форме уравнения: число атомов кислорода в левой части 8, в правой 8 . число зарядов: в левой части (2-)+(6+) = 4+, в правой2(2+) = 4+. Уравнение составлено правильно, так как атомы и заряды уравнены.

Методом полуреакций составляется уравнение реакции в ионной форме. Чтобы от него перейти к уравнению в молекулярной форме, поступаем так: в левой части ионного уравнения к каждому аниону подбираем соответствующий катион, а к каждому катиону — анион. Затем те же ионы в таком же числе записываем в правую часть уравнения, после чего ионы объединяем в молеку­лы:

Таким образом, составление уравнений окислительно-восстановительных реакций с помощью метода полуреакций приводит к тому результату, что и метод электронного баланса.

Сопоставим оба метода. Достоинство ыметода полуреакций по срав­нению с методом электронного баланса в том. что в нем применяются не гипотетические ионы,а реально существующие. В самом деле, в растворе нет ионов а есть ионы

При методе полуреакций не нужно знать степень окисления атомов. Написание отдельных ионных уравнений полуреакций необхо­димо для понимания химических процессов в гальваническом элементе и при электролизе. При этом методе видна роль среды как активного участника всего процесса. Наконец,при использовании метода полуреакций не нужно знать все получающиеся вещества, они появляются в уравнении реакции при выводе его. Поэтому методу полуреакций следует отдать предпочтение и применять его при состав­лении уравнений всех окислительно-восстановительных реакций, про­текающих в водных растворах.

Электрохимический ряд напряжений

Разность потенциалов «вещество электрода – раствор» как раз и служит количествен­ной характеристикой способности вещества (как металлов, так и неметаллов) переходить в раствор в виде ионов, т.е. характери­стикой ОВ способности иона и соответствующего ему вещества.

Такую разность потенциалов называют электродным потенциалом.

Однако прямых методов измерений такой разности потенциалов не существует, поэтому условились их определять по отношению к так называемому стандартному водородному электроду, потенци­ал которого условно принят за ноль (часто его также называют электродом сравнения). Стандартный водородный электрод состоит из платиновой пластинки, погруженной в раствор кислоты с кон­центрацией ионов Н+ 1 моль/л и омываемой струей газообразного водорода при стандартных условиях .

Возникновение потенциала на стандартном водородном электроде можно представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:

H2 2H.

Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:

H Н+ + е.

Суммарный процесс выражается уравнением:

Н2 + + 2е.

Платина не принимает участия в окислительно — восстановительном процессе, а является лишь носителем атомарного водорода.

Если пластинку некоторого металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25° С, и характеризует стандартный элек­тродный потенциал металла, обозначаемый обычно как Е0.

По отношению к системе Н2/2Н+ некоторые вещества будут вести себя как окислители, другие — как восстановители. В настоящее время получены стандартные потенциалы практически всех металлов и многих неметаллов, которые характеризуют относительную способность восстановителей или окислителей к от­даче или захвату электронов.

Потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-“, а знаком “+” отмечены потенциалы электродов, являющихся окислителями.

Если расположить металлы в порядке воз­растания их стандартных электродных потенциалов, то образует­ся так называемый электрохимический ряд напряжений метал­лов:

Li, Rb, К, Ва, Sr, Са, Nа, Мg, Аl, Мn, Zn, Сr, Fе, Сd, Со, Ni, Sn, Рb, Н, Sb, Вi, Сu, Hg, Аg, Рd, Рt, Аu.

Ряд напряжений характеризует химические свойства металлов.

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

Представленная информация была полезной?
ДА
58.69%
НЕТ
41.31%
Проголосовало: 961

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений металлов после него. Исключениями являются лишь щелочные и щелочноземельные металлы, которые не будут восстанавливать ионы других металлов из растворов их солей. Это связано с тем, что в этих случаях с большей скоростью протекают реакции вза­имодействия металлов с водой.

3. Все металлы, имеющие отрицательный стандартный элек­тродный потенциал, т.е. находящиеся в ряду напряжений метал­лов левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах, поскольку потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Именно поэтому электрохимический ряд начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией про­цесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Так, все полуреакции окисления галогенид-ионов до свободных галогенов

2Cl— 2e = Сl2 Е0= -1,36 В (1)

2Br-2е = Вr2 E0 = -1,07 В (2)

2I-2е = I2 E0 = -0,54 В (3)

могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца (IV) (Е0 = 1,46 В) или перманганата калия (Е0 = 1,52 В). При использовании дихромата калия (E0 = 1,35 В) удается осуществить только реакции (2) и (3). Наконец, использование в качестве окислителя азотной кислоты (E0 = 0,96 В) позволяет осуществить только полуреакцию с участием иодид-ионов (3).

Таким образом, количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

Электролиз

Совокупность ОВР, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

На катоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».На аноде происходит отдача электронов анионами, поэтому анод является «окислителем».

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных ивосстановительных процесса:

на аноде — окисление анионов и гидроксид-ионов, на катоде — восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими
реакциями на электродах являются следующие:

на аноде — окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода .

на катоде — восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении
анода.

При выборе наиболее вероятного процесса на аноде и катоде исходят из положения, что протекает та реакция, которая требует наименьшей затраты энергии.При электролизе растворов солей с инертным электродом используют следующие правила.

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих анионы F, SО42-, NO3, РO43-, ОНвыделяется кислород .

б) при окислении галогенид-ионов выделяются свободные галогены .

в) при окислении анионов органических кислот происходит процесс:

2RCOO — 2е → R-R + 2СО2.

2. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl3+, на катоде выделяется водород . если ион расположен правее водорода, то выделяется металл.

3. При электролизе растворов солей, содержащих ионы, расположенные между Аl3+ и Н+ на катоде могут протекать конкурирующие процессы как восстановления катионов, так ивыделения водорода.

Рассмотрим в качестве примера электролиз водного раствора хлорида меди на инертных электродах. В растворе находятся ионы Cu2+ и Cl,которые под действием электрического тока направляются к соответствующим электродам:

&lt .&gt .

  CuCl2  
     
(-) Катод ← Cu2+ + 2Cl → Анод (+)  
Cu2+ + 2e = Cu0   2Cl— 2e = Cl2  

На катоде выделяется металлическая медь, на аноде — газообразный хлор.

Если в рассмотренном примере электролиза раствора СuCl2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления,вместо разрядки ионов Сl и выделения хлора протекает окисление анода (меди). В этом случае происходит растворение самого анода, и в виде ионов Сu2+ он переходит в раствор.Электролиз СuCl2 с растворимым анодом можно записать так:

  CuCl2  
   
(-) Катод ← Cu2+ + 2Cl → Анод (+)
Cu2+ + 2e = Cu0   2Cu— 2e = Cu2+

Таким образом, электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод.Это свой­ство широко используется при рафинировании (очистке) металлов от загрязнений.

Для получения высокоактивных металлов (калия, алюминия и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов, например

&lt .&gt .

  Al2O3  
  расплав
(-) катод ← 2Al3+ + 2Cl → анод (+) (С – графит)
2Al3+ + 6e = 2Al0   3O2- — 6e = 3/2O2
    2C + O2 = 2CO
    2CO + O2 = 2CO2

При электролизе водного раствора соли активного металла кислородсодержащей кислоты (например, КNО3) ни катионы металла, ни ионы кислотного остатка не разряжаются. На катоде выделяется водород, а на аноде — кислород, и электролиз раствора нитрата калия сводится к электролитическому разложению воды.

Отметим, что электролиз растворов электролитов проводить энергетически выгоднее, чем расплавов, так как электролиты плавятся при очень высоких температурах.

Зависимость количества вещества, образовавшегося при электролизе, от времени и силы тока описывается обобщенным законом Фарадея:

m = (Э / F) • I • t = (М / (n • F)) • I • t,

где m — масса образовавшегося при электролизе вещества (г) . Э — эквивалентная масса вещества (г/моль) . М — молярная масса вещества (г/моль) . n — количество отдаваемых или принимаем электронов . I — сила тока (А) . t — продолжительность процесса (с) . F — константа Фарадея, характеризующая количество электричества,необходимое для выделения 1 эквивалентной массы вещества (F= 96500 Кл/ моль = 26,8 А• ч / моль).


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.69%
НЕТ
41.31%
Проголосовало: 961

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет