Как показывает само название, этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления с последующим суммированием их в общее уравнение. В качестве примера составим уравнение той же реакции, которую использовали при объяснении метода электронного баланса. При пропускании сероводорода Н2S через подкисленный раствор перманганата калия КМnО4 малиновая окраска исчезает и раствор мутнеет. Опыт показывает, что помутнение раствора происходит в результате образования элементной серы,т.е. протекания процесса:
Н2S → S + 2H+
Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части схемы отнять два электрона, после чего можно стрелку заменить на знак равенства:
Н2S — 2е— = S + 2H+
Это первая полуреакция — процесс окисления восстановителя Н2S.
Обесцвечивание раствора связано с переходом иона MnO4— (он имеет малиновую окраску) в ион Mn2+ (практически бесцветный и лишь при большой концентрации имеет слабо-розовую окраску), что можно выразить схемой
|
|
MnO4— → Mn2+
В кислом растворе кислород, входящий в состав ионов МnО4, вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так:
MnO4— + 8Н+→ Мn2+ + 4Н2О
Чтобы стрелку заменить на знак равенства, надо уравнять и заряды. Поскольку исходные вещества имеют семь положительных зарядов (7+), а конечные — два положительных(2+), то для выполнения условия сохранения зарядов надо к левой части схемы прибавить пять электронов:
MnO4— + 8Н+ + 5e—= Mn2+ + 4Н2О
Это вторая полуреакция — процесс восстановления окислителя, т.е. перманганат-иона
Для составления общего уравнения реакции надо уравнения полуреакций почленно сложить, предварительно уравняв числа отданных и полученных электронов.В этом случае по правилам нахождения наименьшего кратного определяют соответствующие множители, на которые умножаются уравнения полуреакций.Сокращенно запись проводится так:
И, сократив на 10Н+, окончательно получим
5Н2S + 2MnO4— + 6H+ = 5S + 2Mn2+ + 8Н2О
Проверяем правильность составленного в ионной форме уравнения: число атомов кислорода в левой части 8, в правой 8 . число зарядов: в левой части (2-)+(6+) = 4+, в правой2(2+) = 4+. Уравнение составлено правильно, так как атомы и заряды уравнены.
Методом полуреакций составляется уравнение реакции в ионной форме. Чтобы от него перейти к уравнению в молекулярной форме, поступаем так: в левой части ионного уравнения к каждому аниону подбираем соответствующий катион, а к каждому катиону — анион. Затем те же ионы в таком же числе записываем в правую часть уравнения, после чего ионы объединяем в молекулы:
|
|
Таким образом, составление уравнений окислительно-восстановительных реакций с помощью метода полуреакций приводит к тому результату, что и метод электронного баланса.
Сопоставим оба метода. Достоинство ыметода полуреакций по сравнению с методом электронного баланса в том. что в нем применяются не гипотетические ионы,а реально существующие. В самом деле, в растворе нет ионов а есть ионы
При методе полуреакций не нужно знать степень окисления атомов. Написание отдельных ионных уравнений полуреакций необходимо для понимания химических процессов в гальваническом элементе и при электролизе. При этом методе видна роль среды как активного участника всего процесса. Наконец,при использовании метода полуреакций не нужно знать все получающиеся вещества, они появляются в уравнении реакции при выводе его. Поэтому методу полуреакций следует отдать предпочтение и применять его при составлении уравнений всех окислительно-восстановительных реакций, протекающих в водных растворах.
Электрохимический ряд напряжений
Разность потенциалов «вещество электрода – раствор» как раз и служит количественной характеристикой способности вещества (как металлов, так и неметаллов) переходить в раствор в виде ионов, т.е. характеристикой ОВ способности иона и соответствующего ему вещества.
Такую разность потенциалов называют электродным потенциалом.
Однако прямых методов измерений такой разности потенциалов не существует, поэтому условились их определять по отношению к так называемому стандартному водородному электроду, потенциал которого условно принят за ноль (часто его также называют электродом сравнения). Стандартный водородный электрод состоит из платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов Н+ 1 моль/л и омываемой струей газообразного водорода при стандартных условиях .
Возникновение потенциала на стандартном водородном электроде можно представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:
H2 2H.
Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:
H Н+ + е.
Суммарный процесс выражается уравнением:
Н2 2Н+ + 2е.
Платина не принимает участия в окислительно — восстановительном процессе, а является лишь носителем атомарного водорода.
Если пластинку некоторого металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25° С, и характеризует стандартный электродный потенциал металла, обозначаемый обычно как Е0.
По отношению к системе Н2/2Н+ некоторые вещества будут вести себя как окислители, другие — как восстановители. В настоящее время получены стандартные потенциалы практически всех металлов и многих неметаллов, которые характеризуют относительную способность восстановителей или окислителей к отдаче или захвату электронов.
Потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-“, а знаком “+” отмечены потенциалы электродов, являющихся окислителями.
Если расположить металлы в порядке возрастания их стандартных электродных потенциалов, то образуется так называемый электрохимический ряд напряжений металлов:
Li, Rb, К, Ва, Sr, Са, Nа, Мg, Аl, Мn, Zn, Сr, Fе, Сd, Со, Ni, Sn, Рb, Н, Sb, Вi, Сu, Hg, Аg, Рd, Рt, Аu.
Ряд напряжений характеризует химические свойства металлов.
1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.
|
|
2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений металлов после него. Исключениями являются лишь щелочные и щелочноземельные металлы, которые не будут восстанавливать ионы других металлов из растворов их солей. Это связано с тем, что в этих случаях с большей скоростью протекают реакции взаимодействия металлов с водой.
3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т.е. находящиеся в ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.
Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах, поскольку потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Именно поэтому электрохимический ряд начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов.
Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?
Так, все полуреакции окисления галогенид-ионов до свободных галогенов
2Cl—— 2e = Сl2 Е0= -1,36 В (1)
2Br—-2е = Вr2 E0 = -1,07 В (2)
2I—-2е = I2 E0 = -0,54 В (3)
могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца (IV) (Е0 = 1,46 В) или перманганата калия (Е0 = 1,52 В). При использовании дихромата калия (E0 = 1,35 В) удается осуществить только реакции (2) и (3). Наконец, использование в качестве окислителя азотной кислоты (E0 = 0,96 В) позволяет осуществить только полуреакцию с участием иодид-ионов (3).
Таким образом, количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.
|
|
Электролиз
Совокупность ОВР, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.
На катоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».На аноде происходит отдача электронов анионами, поэтому анод является «окислителем».
При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.
При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных ивосстановительных процесса:
на аноде — окисление анионов и гидроксид-ионов, на катоде — восстановление катионов и ионов водорода.
При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими
реакциями на электродах являются следующие:
на аноде — окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода .
на катоде — восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении
анода.
При выборе наиболее вероятного процесса на аноде и катоде исходят из положения, что протекает та реакция, которая требует наименьшей затраты энергии.При электролизе растворов солей с инертным электродом используют следующие правила.
1. На аноде могут образовываться следующие продукты:
а) при электролизе растворов, содержащих анионы F—, SО42-, NO3—, РO43-, ОН— выделяется кислород .
б) при окислении галогенид-ионов выделяются свободные галогены .
в) при окислении анионов органических кислот происходит процесс:
2RCOO— — 2е → R-R + 2СО2.
2. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl3+, на катоде выделяется водород . если ион расположен правее водорода, то выделяется металл.
3. При электролизе растворов солей, содержащих ионы, расположенные между Аl3+ и Н+ на катоде могут протекать конкурирующие процессы как восстановления катионов, так ивыделения водорода.
Рассмотрим в качестве примера электролиз водного раствора хлорида меди на инертных электродах. В растворе находятся ионы Cu2+ и Cl—,которые под действием электрического тока направляются к соответствующим электродам:
< .> .
CuCl2 | |||
↓ | |||
(-) Катод ← Cu2+ | + | 2Cl— → Анод (+) | |
Cu2+ + 2e = Cu0 | 2Cl— — 2e = Cl2 |
На катоде выделяется металлическая медь, на аноде — газообразный хлор.
Если в рассмотренном примере электролиза раствора СuCl2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления,вместо разрядки ионов Сl и выделения хлора протекает окисление анода (меди). В этом случае происходит растворение самого анода, и в виде ионов Сu2+ он переходит в раствор.Электролиз СuCl2 с растворимым анодом можно записать так:
CuCl2 | ||
↓ | ||
(-) Катод ← Cu2+ | + | 2Cl— → Анод (+) |
Cu2+ + 2e = Cu0 | 2Cu— — 2e = Cu2+ |
Таким образом, электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод.Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.
Для получения высокоактивных металлов (калия, алюминия и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов, например
< .> .
Al2O3 | ||
↓ | расплав | |
(-) катод ← 2Al3+ | + | 2Cl— → анод (+) (С – графит) |
2Al3+ + 6e = 2Al0 | 3O2- — 6e = 3/2O2 | |
2C + O2 = 2CO | ||
2CO + O2 = 2CO2 |
При электролизе водного раствора соли активного металла кислородсодержащей кислоты (например, КNО3) ни катионы металла, ни ионы кислотного остатка не разряжаются. На катоде выделяется водород, а на аноде — кислород, и электролиз раствора нитрата калия сводится к электролитическому разложению воды.
Отметим, что электролиз растворов электролитов проводить энергетически выгоднее, чем расплавов, так как электролиты плавятся при очень высоких температурах.
Зависимость количества вещества, образовавшегося при электролизе, от времени и силы тока описывается обобщенным законом Фарадея:
m = (Э / F) • I • t = (М / (n • F)) • I • t,
где m — масса образовавшегося при электролизе вещества (г) . Э — эквивалентная масса вещества (г/моль) . М — молярная масса вещества (г/моль) . n — количество отдаваемых или принимаем электронов . I — сила тока (А) . t — продолжительность процесса (с) . F — константа Фарадея, характеризующая количество электричества,необходимое для выделения 1 эквивалентной массы вещества (F= 96500 Кл/ моль = 26,8 А• ч / моль).
