X-PDF

Понятие уравнения с одной переменной. Равносильные уравнения. Теоремы о равносильных уравнениях (доказательство одной по выбору студента)

Поделиться статьей

Билет № 1

Пусть f(x) и g(x) – два выражения с переменной х и областью определения Х, тогда высказывательная форма вида f(x)=g(x) называется уравнением с одной переменной, определенном на множестве Х. 3х=2(5х-8)+х 3х=10х-16+х

3х-10х-х=-16 -8х=-16 х=2

Значение переменной х, при котором уравнение обращается в истинное числовое равенство называется корнем уравнения или его решением.

Решить уравнение – найти множество его корней.

Два уравнения называются равносильными, если множества их корней совпадают.

Т – множество корней уравнения.

f(x)=g(x)

(1).x2 – 9=0 T1={3 .-3}

(2). (x-3)(x+3)=0 T2={3 .-3}

T1=T2

(1)=(2) (знак равносильно)

Любое тождественное преобразование левой или правой, или обеих частей уравнения приводит к уравнению, равносильному данному.

Теорема 1: Пусть уравнение f(x)=g(x) задано на множестве Х, выражение с переменной h(x) определено на том же множестве Х.

Тогда уравнения (2) f(x)+h(x)=g(x)+h(x) (знак равносильно) f(x)=g(x) (1) равносильны.

Т1 – множество корней уравнения (1)

Т2 – множество корней уравнения (2)

Надо доказать: Т12

1) х1 (принадлежит) Т1

Возьмем произвольный элемент

х1 (принадлежит) Т1 (следовательно) х1 – корень (1) уравнения (следовательно) f(x1)=g(x1) – и.ч.р.

Т.к. Т1 с Х, х1 (принадлежит) Т1, то х1 (принадлежит) Х (следовательно) h(x1) – это числовое выражение, имеющее смысл (следовательно) f(x1)+h(x1)=g(x1)+h(x1) – и.ч.р. (следовательно) х1 – корень (2) уравнения, т.е. х1 (принадлежит) Т2

Итак, ((х1 (принадлежит) Т1)=(х1 (принадлежит) Т2)) (следовательно) Т1 с Т2

2) х2 (принадлежит) Т2 (следовательно) х2 – корень (2) уравнения (следовательно) f(x2)+h(x2)=g(x2)+h(x2) – и.ч.р.

h(x2) – числовое выражение, имеющее смысл (следовательно)f(x2)+h(x2)-h(x2)=g(x2)+h(x2)-h(x2) – и.ч.р.

Представленная информация была полезной?
ДА
58.69%
НЕТ
41.31%
Проголосовало: 990

Выполним тождественное преобразование левой и правой частей равенства, получили и.ч.р. (следовательно) f(x2)=g(x2) – и.ч.р. (следовательно) х2 – корень (1) уравнения, т.е. х2 (принадлежит) Т1

Вывод: Итак, мы взяли

2 (принадлежит) Т2(следовательно) х2 (принадлежит) Т1) (следовательно) Т2 с Т1

3) Т1 с Т2}

Т2 с Т1} (следовательно) Т12 (следовательно)

(f(x)=g(x)) (равносильно) f(x)+h(x)=g(x)+h(x) – ч.т.д.

Следствия:

1. Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.

2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак этого слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2: Пусть уравнение f(x)=g(x) определено на множестве Х и h(x)- выражение с переменной х, определенное на том же множестве и не обращающиеся в ноль ни при каких значениях х из Х.

f(x)=g(x) на Х h(x) на Х

(перевернутая А)х (принадлежит) Х, h(x) (НЕравно) 0, тогда уравнение f(x)*h(x)=g(x)*h(x) равносильно данному

(2) f(x)*h(x)=g(x)*h(x) (равносильно) f(x)=f(x) (1)

Следствие: Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение равное данному.

2. Обучающимся начальных классов предложены задания:

1) Найдите среди следующих записей уравнения: у — 7 . 7 + 7= 14 . у — 7 = 11 . у — 7&gt . 12.

2) Решите уравнения х + 7 = 15 . х +7 = 11 . х • 5 = 10 . х: 7 = 3.

3) Решите с объяснением: (х + 50) • 4 = 232.

• Какова образовательная цель каждого из заданий?

• Приведите рассуждения ученика при выполнении каждого из заданий.

• Какие знания лежат в основе решения третьего задания?

• Выполните 3) задание, указывая теоретические положения о равносильности уравнений.

• Раскройте методику ознакомления учащихся начальной школы с понятием «уравнение».


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.69%
НЕТ
41.31%
Проголосовало: 990

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет