X-PDF

Сущность, применение и оборудование кислородно-флюсовой резки

Поделиться статьей

Тема 3.3.1 Кислородная и кислородно-флюсовая резка, сущность процессов, применяемое оборудование

Вопросы:

1. Сущность кислородной резки, ее применение, усло­вия резки.

2. Конструкция и принцип работы резака для ручной термической резки. Оборудование для машин­ной резки.

3. Резка разделительная, поверхностная, кисло­родным копьем.

1. Кислородная резка металлов основана на свойстве нагретого металла интенсивно сгорать в струе кисло­рода. Металл в месте разреза нагревают газовым пла­менем до температуры его воспламенения в кислороде и на нагретую поверхность направляют струю режущего кислорода. Воспламенившийся металл сгорает, а обра­зующиеся окислы сдуваются струей кислорода.

Для осуществления процесса кислородной резки не­обходимы следующие условия: температура горения ме­талла в кислороде должна быть ниже температуры его плавления . образующиеся в процессе резки окислы ме­талла должны плавиться при температуре более низкой . чем температура горения металла . теплопроводность металла должна быть низкой . количество тепла, выде­ляющегося при сгорании металла, должно быть доста­точно большим, чтобы обеспечить непрерывность про­цесса резки . консистенция окислов металла должна быть жидкой. Наиболее точно перечисленным выше ус­ловиям отвечают стали.

Процесс резки (рис.82) начинается с нагрева метал­ла 1 в начальной точке реза до температуры воспламене­ния данного металла в кислороде. Нагрев осуществляет­ся подогревающим пламенем 3, которое образуется при сгорании горючего газа в кислороде. Когда температура нагрева металла достигает требуемой величины, пуска­ется струя режущего кислорода 2.

Режущий кислород попадает на нагретый металл и зажигает его. При горении металла выделяется теплота, которая вместе с подогревающим пламенем разогревает нижележащие слои, и горение распространяется на всю толщину металла. Образующиеся при сгорании металла окислы 5, будучи в расплавленном состоянии, увлекают­ся струей режущего кислорода и выдуваются из зоны реза 4. Если перемещать резак по заданной линии с над­лежащей скоростью, то форма реза будет соответство­вать заданной конфигурации. Рис.82

Газокислородная резка находит широкое применение почти во всех областях металлургической и металлообрабатывающей промыш­ленности. Ее применяют при раскрое листовой стали, при резке профильного металла, при вырезке косынок, кру­гов фланцев и других фасонных заготовок.

Для подогрева стали до температуры 600…700°С применяют горючие газы: ацетилен, природные газы, па­ры бензина и керосина.

Газопламенная кислородная резка позволяет резать металл толщиной до 300 ммпростейшей аппаратурой, проводить резку на монтаже, и полевых условиях. Этим способом режутся малоуглеродистые и низколегированные стали.

2. Резка может быть ручной и машинной. Для ручной резки применяют универсальный резак типа УР (рис.6), имеющий сменные мундштуки.

Универ­сальный резак, подобно инжекторной горелке, состоит из двух частей: корпуса и наконечника. Резак имеет инжек­торное устройство, обеспечивающее нормальную работу при любом давлении газа. Рис.83

В резаке есть дополнительный канал 2 (рис. 83) для подачи режущего кислорода. Го­ловка резака 1 состоит из внутреннего мундштука, по которому выходит режущий кислород, и наружного мунд­штука. По кольцевому зазору между внутренним и на­ружным мундштуками подается ацетилено – кислородная смесь, которая при сгорании нагревает металл в месте резки.

Универсальный инжекторный резак укомплектовав двумя наружными и пятью внутренними мундштуками. Этим резаком можно резать низкоуглеродистые стали толщиной от 3 до 300 мм. Номера сменных мундштуков выбирают в зависимости от толщины разрезаемого металла. Например, для резки стали толщиной 3…5 мм ис­пользуют наружный и внутренний мундштуки № 1, тол­щиной 200…300 мм – наружный мундштук №2, а внут­ренний – №5. Давление кислорода при газовой резке устанавливают в пределах 0,2…1,4 МПа, в зависимости от толщины разрезаемого металла, а ацетилена – не ниже 0,001 МПа.

Машинную резку выполняют наавтоматах и полуав­томатах, имеющих один или несколько резаков, позволя­ющих проводить резку по сложному контуру.

В качестве аппаратуры для газовой резки используют кислородные и ацетиленовые баллоны. Вместо ацетиленового баллона может применяться ацетиленовый генератор.

3. По характеру и направлению кислородной струи различают 3 вида резки:

— разделительная (делают сплошные разрезы) .

— поверхностная (снимает поверхностный слой) .

— кислородным копьем (прожигают в металле отверстия).

При выполнении разделительной кислородной резки необходимо учитывать, какие требования предъявляются к точности резки и качеству поверхности вырезаемой детали. Чем ниже эти требования, тем меньше расходуется кислорода и горючего и тем большей может быть скорость резки.

Например, при разделочной резке (резка в лом) качество поверхности и точность резки не имеют значения. Поэтому резка ведется вручную при наибольшей возможной скорости.

При заготовительной резке (вырезается заготовка, из которой механической обработкой изготавливается деталь) качество реза также не имеет значения, но должен быть выдержан определенный размер заготовки при наименьших припусках на механическую обработку. Резка производится вручную. При этом часто применяются простейшие приспособления (опорные ролики, циркуль, направляющие тележки и т. п.), с помощью которых легче выдержать задаваемые припуски.

Резка под сварку должна осуществляться так, чтобы была чистая поверхность реза и были соблюдены заданные размеры детали. Требования повышаются, когда детали подготавливаются под автоматическую сварку. В этом случае применяется обычно механизированная резка.

Представленная информация была полезной?
ДА
58.65%
НЕТ
41.35%
Проголосовало: 989

Чистовая вырезка круглых и фасонных деталей, которые будут использованы без последующей механической обработки, производится только автоматами.

Таким образом, в зависимости от вида кислородной разделительной резки необходимо добиваться определенного качества реза.

Поверхностной кислородной резкой называется процесс снятия слоя металла с поверхности обрабатываемой детали, выполняемый посредством кислородной струи.

В отличие от разделительной резки, при которой кислородная струя направляется перпендикулярно поверхности обрабатываемого металла или углом вперед с углом атаки φ = 45° и более, при поверхностной резке угол атаки меньше и составляет обычно 10…30°. В результате наклонного направления струи и малой скорости ее истечения в связи с применением относительно небольших давлений кислорода (редко выше 4…5 кгс/см2) и больших сечений выходных каналов для кислорода, струя, врезаясь в подготовленный в тепловом отношении металл, деформируется и выбрасывается в сторону той же поверхности, с которой она и была введена. На эту же Рис.84

поверхность выбрасывается и сожженный металл в виде расплавленного шлака. Если резак перемещать вперед с определенной для конкретных условий скоростью, то кислородная струя будет сжигать следующие объемы уже подогретого металла. При этом шлак в значительной

степени облегчает тепловую подготовку металла, подлежащего резке кислородной струей, позволяя применять значительную линейную скорость резки и сжигать в единицу времени большее количество металла поверхностного слоя.

Шлак, получающийся при поверхностной кислородной резке, отличается от шлака при разделительной резке большим количеством несожженного железа, а его влияние на тепловую подготовку металла при установившемся процессе резки значительно сильнее, чем при разделительной. Общий вид процесса поверхностной кислородной резки представлен на рис. 84.

Кислородное копье – стальная трубка, по которой пропускается кислород. Будучи предварительно нагретым до температуры 1350…1400°С, рабочий конец копья после пуска кислорода начинает интенсивно окисляться (гореть), развивая температуру до 2000° С. Для увеличения тепловой мощности копья внутрь трубки обычно закладывают стальной пруток.

Для начального нагрева копья пользуются обычно посторонними источниками нагрева сварочной дугой, пламенем сварочной горелки, Рис.85

подогревающим пламенем резака и др. В начальный момент, при зажигании копья, давление кислорода устанавливают небольшим, после же воспламенения трубки и установления устойчивого процесса давление кислорода поднимают до рабочего.

В процессе горения копье непрерывно укорачивается, причем в зависимости от толщины прожигаемого материала длина сгоревшей части трубки копья может быть в 5—25 раз больше длины прожигаемого отверстия. Обычно процесс прожигания кислородным копьем отверстий производят без применения подогревающего пламени.

Процесс прожигания кислородным копьем отверстий начинается с воспламенения рабочего конца копья в кислороде. После воспламенения его прижимают к поверхности прожигаемого металла, и, заглубив его в металл, увеличивают давление кислорода до требуемой рабочей величины, совершая копьем периодически возвратно-поступательные и вращательные движения. В процессе прожигания отверстия торец копья все время необходимо прижимать к обрабатываемому металлу, отрывая его лишь на короткое время при возвратно-поступательном движении. Образуемые в процессе прожигания отверстия шлаки давлением кислорода и газов, продуктов реакции окисления металла, выносятся в зазор между трубкой копья и стенкой прожигаемого отверстия.

Кислородным копьем можно прожигать отверстия во всех пространственных положениях. В качестве копья при прожигании отверстий в стали может служить стальная водогазопроводная трубка с диаметром проходного сечения 10 и 15 мм и заложенная внутрь нее низкоуглеродистая проволока диаметром 4 и 5 мм.

4. Сущность процесса кислородно-флюсовой резки состоит в том, что в зону реза, подогретую газовым пламенем, вместе со струей режущего кислорода вводят порошок флюса, который сгорает в кислороде, выделяя теплоту, повышающую температуру в зоне реза, – это термическое воздействие флюса. Продукты сгорания флюса образуют с тугоплавкими окислами разрезаемого материала жидкотекучие шлаки, которые удаляются из реза струей режущего кислорода — это химическое действие флюса. И, наконец, частицы порошка флюса сгорают не сразу и, перемещаясь в процессе горения в глубину реза, ударным трением стирают с поверхности кромок тугоплавкие окислы, способствуя их удалению из реза, — это абразивное действие флюса.

Увеличение количества выделяющейся при этом процессе теплоты позволяет применять его для резки материалов, окисление которых связано с образованием тугоплавких и вязких соединений. Расчет состава флюса для резки конкретных металлов производят по диаграммам состояния из условий получения шлакового состава с минимальной температурой плавления и вязкостью.

Аппараты для кислородно-флюсовой резки состоят из резака, флюсопитателя и устройства для подачи флюса в резак. Резаки для кислородно-флюсовой резки отличаются от резаков для кислородной резки только тем, что каналы для подачи режущего кислорода сделаны большим диаметром.

Применяют три схемы подачи флюса: внешнюю, однопроводную под высоким давлением и механическую (рис. 86). По первой схеме в верхнюю и нижнюю часть бачка 1 с флюсом подают кислород 2. В верхней части создается давление, а в нижней – кислород вдувается в шланг 3, засасывая (инжектируя) флюс. Газофлюсовая смесь подается по шлангу 3 в надетую на резак 4 головку 5, выходя из отверстий которой, засасывается струей режущего кислорода и поступает в зону реза. При этой схеме может использоваться любой кислородный резак, на него надо только надеть головку для подачи флюса. При однопроводной схеме флюс 3 инжектируется из бачка непосредственно струей режущего кислорода 6. Флюсокислородная смесь поступает по шлангу 3 через центральный канал резака 4. При механической подаче в нижней части флюсового бачка 1 установлен шнек 7 с электромеханическим приводом 8. При вращении шнека 7 флюс захватывается им и по шлангу 3 проталкивается в головку резака 4, где подхватывается струей режущего кислорода 6.

Рис. 86 Схемы подачи флюса при кислородно-флюсовой резке:

а – внешняя . б – однопроводная под давлением . в – механическая . 1 – бачок с флюсом . 2 – кислород . 3 – шланг . 4 – резак . 5 – головка . 6 – струя режущего кислорода . 7 – шнек . 8 – электромеханический привод

Техника кислородно-флюсовой резки в основном такая же, как и при кислородной резке. При кислородно-флюсовой резке мощность подогревающего пламени должна быть на 15…20 % больше, чтобы частицы флюса равномерно нагревались до воспламенения. Расстояние между торцом мундштука и поверхностью разрезаемого листа увеличивают до 25 мм, а при резке металла толщиной более 100 мм – до 40…60 мм. Это уменьшает возможность засорения выходных каналов мундштука. Скорость резки должна быть согласована с количеством флюса, подаваемого в единицу времени. Правильный выбор расхода флюса можно оценить по наличию небольшого валика расплавленного железа на верхних кромках реза. При толщине разрезаемого металла 10…200 мм скорость резки выбирают в пределах 0,76…0,23 м/мин, а расход флюса – 0,25…0,8 кг/ч. Вентиль подачи флюса открывают после зажигания подогревающего пламени. Продолжительность подогрева металла в начале процесса значительно меньше, чем при кислородной резке: для листов толщиной 10…80 мм на подогрев требуется от 15 до 120 с. Давление режущего кислорода, например, при резке стали Х18Н10Т толщиной 10…100 мм составляет 0,5…07 МПа.

Кислородно-флюсовая резка применяется не только для металлов, но и для резки бетона и железобетона. Отличие состоит в том, что поскольку бетон в кислороде не горит, при резке должны применяться флюсы с большей тепловой эффективностью, чем для металлов. Хороший результат дает флюс, состоящий из 75…85 % железного и 15…25 % алюминиевого порошков. Флюс к резаку подают по внешней схеме сжатым воздухом или азотом, вдувая газофлюсовую смесь в струю режущего кислорода. Можно резать бетон толщиной 90…300 мм со скоростью 0,15…0,04 м/мин при расходе флюса 20…42 кг/ч.

При кислородно-флюсовой резке, чтобы флюс не воспламенился в резаке, шланге или в бачке, нельзя применять порошки, содержащие более 96 % чистого железа или чистого алюминия. При резке меди, сплавов с высоким содержанием марганца и при наличии во флюсе песка необходимо пользоваться респиратором. При подаче флюса через режущее сопло резака нельзя применять мелкие легковоспламеняющиеся железные порошки. Обязательна регулярная проверка исправности резака. При резке кислородным или порошковым копьем источник опасности — интенсивный поток раскаленных частиц шлаков, разбрасываемых на расстояние нескольких метров. Это пожароопасно и может вызвать ожоги рабочих.

Кислородно-флюсовой резке подвергают высоколегированную сталь, чугун, сплавы меди и алюминия, зашлакованый металл, а также не металлические материалы – огнеупоры и железобетон.

Кислородно-флюсовую резку применяют широко в тяжелом машиностроении и металлургии для обрезки прибылей литья, резки блюмов в холодном состоянии, отрезки от горячего слитка мерных заготовок.


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.65%
НЕТ
41.35%
Проголосовало: 989

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет