X-PDF

Уравнение четвертой степени.

Поделиться статьей

Тждество — это равенство двух отличных по записи, но имеющиходинаковое значение, выражений, при любых переменных из их области определения.

(a – b)2

=

(a – b) 2: 2

— верное тождество

2
       
       

2. Уравнение Если в равенство входит буква, то равенство называется уравнением.
Уравнение может быть верным при одних значениях этой буквы
и неверным при других ее значениях.

Например, уравнение x + 6 = 7
верно при x = 1
и неверно при x = 2.

3.   Равносильные уравнения Линейное уравнение имеет вид ax + by + c = 0.
Например: 5x – 4y + 6 = 0.
Выразим y:
⇒ 4y = 5x + 6 ⇒ y =

5x+6
4

⇒ y = 1,25x + 1,5.
Полученное уравнение, равносильное первому, имеет вид
y = kx + m,
где: x — независимая переменная (аргумент) .
y — зависимая переменная (функция) .
k и m — коэффициенты (параметры).

4 Эквивалентные уравнения

Два уравнения и называются равносильными (эквивалентными), если совпадают множества всех их решений или оба они не имеют решений и обозначают .

5/ Уравнение первой степени.

Уравнение первой степени можно привести к виду:

ax + b = 0,

где x – переменная, a и b – некоторые числа, причем a ≠ 0.

Отсюда легко вывести значение x:

b
x = – —
a

Это значение x является корнем уравнения.

Уравнения первой степени имеют один корень.

Уравнение второй степени.

Уравнение второй степени можно привести к виду:

ax2 + bx + c = 0,

где x – переменная, a, b, c – некоторые числа, причем a ≠ 0.

Число корней уравнения второй степени зависит от дискриминанта:

— если D &gt . 0, то уравнение имеет два корня .

— если D = 0, то уравнение имеет один корень .

— если D &lt . 0, то уравнение корней не имеет.

Уравнение второй степени может иметь не более двух корней.

(о том, что такое дискриминант и как находить корни уравнения, см.разделы «Формулы корней квадратного уравнения. Дискриминант» и «Другой способ решения квадратного уравнения»).

Уравнение третьей степени.

Уравнение третьей степени можно привести к виду:

ax 3 + bx 2 + cx + d = 0,

где x – переменная, a, b, c, d – некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более трех корней.

Уравнение четвертой степени.

Уравнение четвертой степени можно привести к виду:

ax 4 + bx 3 + cx2 + dx + e = 0,

где x – переменная, a, b, c, d, e – некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более четырех корней.

Обобщение:

1) уравнение пятой, шестой и т.д. степеней можно легко вывести самостоятельно, следуя приведенной выше схеме .

2) уравнение n -й степени может иметь не более n корней.

6/Уравнением с одной переменной, называется равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

Представленная информация была полезной?
ДА
58.95%
НЕТ
41.05%
Проголосовало: 782

7/расп

1. 8/-11/ Системы линейных уравнений: основные понятия Система линейных уравнений.

Несовместная и неопределенная системы линейных уравнений. Совокупность линейных уравнений.Совместная и несовместная совокупность линейных уравнений.

Система линейных уравнений — это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений — это последовательность чисел (k 1, k 2,…, kn), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1, x 2,…, xn дает верное числовое равенство.

Соответственно, решить систему уравнений — значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.

2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.

3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» — надо описать, как устроено это множество.

Переменная xi называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной xi должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1, x 3 и x 4. Впрочем, с тем же успехом можно утверждать, что вторая система — разрешенная относительно x 1, x 3 и x 5. Достаточно переписать самое последнее уравнение в виде x 5 = x 4.

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

1. Число разрешенных переменных r равно общему числу переменных k: r = k. Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1, x 2 = b 2,…, xk = bk .

2. Число разрешенных переменных r меньше общего числа переменных k: r &lt . k. Остальные (kr) переменных называются свободными — они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2, x 5, x 6 (для первой системы) и x 2, x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1, x 2,…, xr — разрешенные, а xr + 1, xr + 2,…, xk — свободные, то:

1. Если задать значения свободным переменным (xr + 1 = tr + 1, xr + 2 = tr + 2,…, xk = tk), а затем найти значения x 1, x 2,…, xr, получим одно из решений.

2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все — таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше — неопределенной.

Несколько уравнений образуют Совокупность уравнений

2. 12,13/ Линейное неравенство./ Строгие и нестрогие неравенства Что такое неравенство? Берётся любое уравнение, знак = (равно) заменяется на другой значок (&gt . . . &lt . . . ) и получается неравенство.) Уравнение может быть каким угодно: линейным, квадратным,дробным, показательным, тригонометрическим, логарифмическим, и т.д. и т.п. Соответственно, и неравенства у нас получатся линейные, квадратные, и т.д.

Что нужно знать о значках неравенств? Неравенства со значком больше (&gt .), или меньше (&lt .) называются строгими. Со значками больше или равно (), меньше или равно () называются нестрогими. Значок не равно () стоит особняком, но решать примеры с таким значком тоже приходится постоянно. И мы порешаем.)

Сам значок не оказывает особого влияния на процесс решения. А вот в конце решения, при выборе окончательного ответа, смысл значка проявляется в полную силу! Что мы и увидим ниже, на примерах. Есть там свои приколы…

Неравенства, как и равенства, бывают верные и неверные. Здесь всё просто, без фокусов. Скажем, 5 &gt . 2 — верное неравенство. 5 &lt . 2 — неверное.

Линейные, квадратные, дробные, показательные, тригонометрические и прочие неравенства решаются по-разному. На каждый вид — свой способ, свой специальный приём. Но! Все эти специальные приёмы можно применять только к некоему стандартному виду неравенства. Т.е. неравенство любого вида нужно сначала подготовить к применению своего способа.

3. 14,16/ Основные свойства неравенств/. Действия с двумя неравенствами.

1) Если

2) Свойство транзитивности. Если

3) Если к обеим частям верного неравенства прибавить одно и то же число, то получится верное неравенство, т.е. если

4) Если из одной части верного неравенства перенести в другую какое-либо слагаемое, изменив его знак на противоположный, то получится верное неравенство, т.е. если

5) Если обе части верного неравенства умножить на одно и то же положительное число, то получится верное неравенство. Например, если

6) Если обе части верного неравенства умножить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство. Например, если

7) Аналогично правилам 5) и 6) действуют правила для деления на одно и то же число. Если


Поделиться статьей
Автор статьи
Анастасия
Анастасия
Задать вопрос
Эксперт
Представленная информация была полезной?
ДА
58.95%
НЕТ
41.05%
Проголосовало: 782

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram

ОБРАЗЦЫ ВОПРОСОВ ДЛЯ ТУРНИРА ЧГК

Поделиться статьей

Поделиться статьей(Выдержка из Чемпионата Днепропетровской области по «Что? Где? Когда?» среди юношей (09.11.2008) Редакторы: Оксана Балазанова, Александр Чижов) [Указания ведущим:


Поделиться статьей

ЛИТЕЙНЫЕ ДЕФЕКТЫ

Поделиться статьей

Поделиться статьейЛитейные дефекты — понятие относительное. Строго говоря, де­фект отливки следует рассматривать лишь как отступление от заданных требований. Например, одни


Поделиться статьей

Введение. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси

Поделиться статьей

Поделиться статьей1. Псковская Судная грамота – крупнейший памятник феодального права эпохи феодальной раздробленности на Руси. Специфика периода феодальной раздробленности –


Поделиться статьей

Нравственные проблемы современной биологии

Поделиться статьей

Поделиться статьейЭтические проблемы современной науки являются чрезвычайно актуальными и значимыми. В связи с экспоненциальным ростом той силы, которая попадает в


Поделиться статьей

Семейство Первоцветные — Primulaceae

Поделиться статьей

Поделиться статьейВключает 30 родов, около 1000 видов. Распространение: горные и умеренные области Северного полушария . многие виды произрастают в горах


Поделиться статьей

Вопрос 1. Понятие цены, функции и виды. Порядок ценообразования

Поделиться статьей

Поделиться статьейЦенообразование является важнейшим рычагом экономического управления. Цена как экономическая категория отражает общественно необходимые затраты на производство и реализацию туристского


Поделиться статьей

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram
Заявка
на расчет